
CS314 Notes 2, 2016
James M. Bieman

2-1

2-1CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

CS314, Colorado State University
Software Engineering

Notes 2: Object-Oriented Design &
Implementation Concepts

James M. Bieman

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Focus: The Connection between OO
Designs and OO Code

• Review object-oriented concepts.
• Introduce the UML design notation.
• Show the relationship between designs

and program code.
• Demonstrate the process of

implementing a design.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Object-Oriented Paradigm

• “Programming as simulation”.
Objects represent “real world” or virtual

entities.
• Entities have state and and behavior.

– State is hidden.
– Behavior is accessed through public

interfaces.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Interacting With an Object

• State viewed
through interfaces:
– Gauges.
– Tachometer.

• Actions through
access methods.
– Gas pedal.
– Steering wheel.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Objects & Encapsulation

• Public methods supply services.
• Private representation of object state.
• Private method implementations.
• Language enforcement of encapsulation.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Abstraction Mechanisms in
Programming Languages

• Control abstraction:
Loops, if-then-else constructs.

• Procedural abstraction:
Procedures, functions, algorithms.

• Data abstractions:
Abstract data type (ADT).

• Object abstraction: Class
...

Names identify realizations of
abstractions.

CS314 Notes 2, 2016
James M. Bieman

2-2

Names in Software Engineering
• Juliet Capulet:

"What's in a name? That
which we call a rose
By any other name would
smell as sweet.”

• Was Juliet right?

• Why do we talk about
names in a software
engineering course?

• Names should be
descriptive of their use.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

How not to name things
(from “How to write unmaintainable code”)

• Take names from a baby naming book:
Fred, Susan, Bob, Jane are great names.

• Single letter names.
• Creative misspelling.
• Be abstract: it, data, stuff.
• Use acronyms.
• Use alternate vocabulary to refer to the same

action:
display, show, present.

• Use names from other languages.
…

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Stack ADT

• Private state:
Stores values of stack items.

• Public operations:
push, pop, top, isEmpty, isFull.

Stack object --- instantiated stack ADT.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

General Properties of Stack Objects
(& other objects)

• May have several instantiated stack objects.
• Each stack object has its own representation.

Each object may have different items stored.
• All stack items respond to the same messages.

Operations encoded as methods in the class
definition.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

To Develop an OO System

• Identify object services.
• Identify system objects.
• Determine connection between objects.
• Implement by defining object classes.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Modeling Classes & Objects
• Class: description of a set of similar

objects.
• Class definition:

– Class name.
– State representation.
– Public interface.
– Private implementation of methods.

CS314 Notes 2, 2016
James M. Bieman

2-3

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Unified Modeling Language
(UML)

• Unifies several prior modeling notations:
Booch, Rumbaugh (OMT), Jacobson, Shlaer-Mellor, Coad-

Yourdan, Wirfs-Brock.
• UML diagram types:

Class diagrams, object diagrams, use case diagrams,
interaction diagrams, package diagrams, sequence
diagrams, state diagrams, activity diagrams, deployment
diagrams, component diagrams.

• Owned and managed by the Object Modeling Group.
Members: IBM, Lockheed Martin, Eclipse, Raytheon, Hewlett-

Packard, AT&T, Boeing, Red Hat, Sandia Nat. Lab., NASA,
MITRE, Qualcomm, Samsung, Saab, and others.

UML is a family of model types

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

[Wikipedia image]

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

UML Class Model

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Stack and Two Stack
Objects in UML

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Methods (Member Functions)

• Provide an object’s services.
Stack services: push, pop, top, isEmpty, and

isFull.
• Public interface: method names &

parameters.
• Private method bodies: implement the

method.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Constructors

• Methods that define how an object is
initialized.

• Run when an object is first created.
• Can be parameterized.
• One class can have several

constructors.
– Pattern selects a constructor.

CS314 Notes 2, 2016
James M. Bieman

2-4

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Objects Are Dynamically Created at
Run Time

• To create stack objects in Java:
Stack s1 = new Stack();
Stack s2 = new Stack();

• Stacks s1 and s2 reference different
stacks.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Push Items Onto the Stacks

s1.push(5);
s1.push(7);
s2.push(10);
s2.push(20);
s2.push(30);

5

7

s1

10

20

30

s2

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Queue Example

• Attributes:
– Queue representation, length, max size,

location of front & back of Queue.
• Operations or functions:

– Queue(), ~Queue() (in c++)
– Enqueue(DataItem data), Dequeue()
– Empty(), Full()

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

UML Class Diagram of the Queue
Class

• Private attributes &
operations indicated
with a -

• Public attributes &
operations indicated
with a +

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Information Hiding

• Module implementation details are
inaccessible (hidden) from other modules.
Ex: front, back, & length of prior example.

• Why limit access?
– Protects module against outside interference.
– Prevents other modules from depending on

implementation details.
– Modification is easier: Local effects of changes.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Encapsulation

• Think of an ADT as a unit or object:
don’t worry about implementation
details (from a higher level of
abstraction).

• Again: The combination of data
(characteristics) with the methods
(behavior) for manipulating an object.

• Ex: Queue class.

CS314 Notes 2, 2016
James M. Bieman

2-5

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Queue Java Implementation

class QueueNode {
DataItem item ;
QueueNode link ;

}

class Queue {
private QueueNode front ;
private QueueNode back ;
private int length ;

// default no-arg constructor
public boolean Empty() {

return (length == 0) ;
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Java Queue (2)
public void Enqueue (DataItem itemvalue) {

QueueNode temp = new QueueNode() ;
temp.item = itemvalue ;
temp.link = null ;
if (back == null) {

front = back = temp ;
} else {

back.link = temp ;
back = temp ;

}
length ++ ;

}
...

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

A Class

• The template for an object.
• The primary ADT.
• Follows OOD nomenclature.
• Provides encapsulation.
• Supports information hiding:

Separates interface and
implementation.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Other OO Terms

• Destructors: methods that free the
dynamic storage used to store an
object’s state.
Not needed in Java; required in C++

• Message passing: mechanism used to
communicate with objects.
Call to an objects method, with parameters.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Links

• Represent connections between
objects.

• Link types represent relationships:
– Non-hierarchical associations.
– Part-of associations: aggregation &

composition.
– Is-a relationship: inheritance.
– Use dependencies: transient connections.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Non-hierarchical Associations in
a Class Diagram

Associations:
– Can have multiplicity indicators.
– Can have direction.

CS314 Notes 2, 2016
James M. Bieman

2-6

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Association Implementation

class Child {
...
private Mother mom;
...

}

• Variable mom
references
mother object.

• Relationship
created by
setting mom
variable.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Association Implementation

Array theKids stores
references to the children.
Need a container class
when there are more than
one to reference.

class Mother {
...
private Child[] theKids

= new Child[20];
...
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Does the implementation match
the class diagram?
class Mother {
...
private Child[] theKids

= new Child[20];
...
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Creating the Relationships

Mother theMom = new Mother();
Child sue = new Child();
Child tom = new Child();
theMom.addChild(tom);
theMom.addChild(sue);
tom.setMom(theMom);
sue.setMom(theMom);

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Keep Instance Variables Private

• You can modify the representation
without changing client code.
– You might change the array representation

of theKids to an implementation of the
Java Collection interface.

– Keeping theKids private allows this change
without affecting an unknown number of
clients.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Composition

• One software entity
is built out of other
entities.

• Composition: a
stronger form of
aggregation.

• Precise definitions of
aggregation continue
to be debated, but
composition is clear.

CS314 Notes 2, 2016
James M. Bieman

2-7

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Implementing Composition

• Component object instantiated by
containing class
class Table {

private Legs[] legs = new Legs[4];
private Top theTop = new Top();
...
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Composition: Objects Composed
of Other Objects

• Range sensors have a
radial or array pattern;
they are placed in a
location on a robot;
users can print or
change sensor values.

• Range sensors consist of
4 ultrasonic sensors.

• Each ultrasonic sensor
has a value. Users can
get or set values.

RangeSensor
location
pattern

printValue
changeValue

Ultrasonics
value

getValue
setValue

4

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Composition Example:
Ultrasonic Class

class Ultrasonic {
private double value;

// instance variable

public Ultrasonic(float v) {
value = v; }

public double getValue() {
return value;
public void setValue(double v)
{value = v;}

Ultrasonic has no
reference to its
containing
RangeSensor object.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

public class rangeSensor {
private Ultrasonic ultras[4] = new Ultrasonic[4];
private double height;
private double offset;
public rangeSensor (double iVal, double h, double o){

for (i=0; i < MAX; i++) ultras[i].set_value(ival);
height=h; offset=o;

}
void printValues() {…}
void changeUltraValue(int ultraNum, double val) {…}

};

Containing Class:
RangeSensor Reference

to contained
objects.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

someClientMethodBody() {
RangeSensor rangeA =

new RangeSensor(10.0,3.0,0.0);
rangeA.print_values();
rangeA.changeValue(0, 6.75);
rangeA.changeValue(1, 11.9);
rangeA.changeValue(2, 3.5);
rangeA.changeValue(3, 5.5);

}

Ultrasonic Client Program

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Polymorphism
• “Ability to hide different implementations

behind a common interface" (Taylor, 1990).

• “Single interface, many implementations”
(Entsminger, 1995).

• “Literally, the ability to have many forms”
(Graham, 1991).

CS314 Notes 2, 2016
James M. Bieman

2-8

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Polymorphism in OO Software
• Supported by dynamic binding (done at run-

time, not at compile-time) and overloading.
– Objects of a declared class can be replaced at

run time with on objects of any of its subclass.
– Dynamic Binding: the method that is invoked

depends on the object that is bound at run time
to a variable rather than the declared type of the
variable.

• Example:
public int m(RangeSensor r){

r.printValues();
}

At runtime any RangeSensor
subclass object may be

bound to r.
A printValues method

defined in the subclass is the
one invoked.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Inheritance Supports
Polymorphism

• Defines a class that is a specialization
of another class.

• Generalization/Specialization in UML.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Inheritance Implements
Specialization.

In Java, use the key word extends:
class Monkey extends Animal {

...
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Inheritance Terms

• Inheritance: a mechanism to implement
a generalization-specialization
relationship.

• Subclass: the specialized, extended or
derived class.

• Superclass: the more general class in
the relationship. The class that is
extended.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Hierarchy
Example

Person

name

getName()

Student

major

getName()

addClass()

dropClass()

Faculty

department

getName(),

gradeStudent()

name, id

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Generalizaion Class
(Base Class or Superclass)

class Person {
private String name;
private String id;
public Person(String n, String ident) {

name = new String(n);
id = new String(ident);

}
public String getName() { return name; }

}

CS314 Notes 2, 2016
James M. Bieman

2-9

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Specialization Class
Derived Class / Subclass

class Student extends Person {

private String major;

public Student(String name, String id, String m){

this.super(name, id); major = m;

}

public String getName() {

return “Student name: “ + this.super.getName()

+ “; Major: “ + major ;

}

public addClass (…) {…}

public dropClass(…) {…}

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Another Specialization Class
class Faculty extends Person {

private Department dept;

public Student(String name, String id, String d){

this.super(name, id); dept = d;

}

public String getName() {

return “Faculty name: “ + this.super.getName()

+ “; Department: “ + dept ;

}

public gradeStudent (…) {…}

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Creating & Using Specialization
Class Objects in Client Code

{
Person t = new Person(“Tom”, “1234”);
Student s = new Student(“Sally”, “4321”, “CS”);
Faculty j = new Faculty(“Jim”, “987”, “CS”);
t.getName();
s.getName();
s.addClass(…);
j.gradeStudent(…);
Person s2 = new Student(“Audrey”, “789”, “Math”);
s2.getName(); // Which getName() runs?

// s2.addClass(); would not compile. Why?
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Inheritance Details
• A subclass cannot directly access private

members of its base class.
• Creating a subclass does not affect its base

class’s source code.
• To resolve polymorphism: At runtime, the

class hierarchy is searched upward to find
the first definition of a member function ---
specialization wins!

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Dynamic Binding (Yo-Yo) Example
public class A {

private int x = 1 ;
public String doIt() {return hi() + "x = " + x;}
public String hi() {return "Hi, I'm A. ";}

}

public class B extends A{
private int x = 2 ;
public String doIt() {
return hi() + "x = " + x + " " + super.doIt();}

public String hi() {return "Hi, I'm B. ";}
}

public class C{
public String m(A a){ return a.doIt();}

public static void main (String[] args){
A testAObj = new B();
C c = new C();
System.out.println(c.m(testAObj));

}

What happens when it runs?

% java C

Hi, I'm B. x = 2 Hi, I'm B. x = 1

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Use Inheritance Only for “is a”
Relationships

• Use inheritance only when the subclass is
a true specialization of the superclass.
– There should be a generalization-

specialization relationship.
– Subclass objects should be clearly a

specialization.
• A student is a specialized person; it has

all of the properties of an animal and
some additional ones.

CS314 Notes 2, 2016
James M. Bieman

2-10

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Java Interfaces

• Java interfaces define operations & type
signatures
interface PointI {

public float x(); /* Show my x coordinate */
public float y(); /* Show my y coordinate */
public Point add(PointI p); /* Point addition */
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Implementing an Interface

class Point implements PointI {
/* representation: x, y are Cartesian coordinate values. */

private float x, y;

/* Construct myself as an origin point */
public Point() {}

/* Construct myself with given x & y coordinates */
public Point(float xval, float yval) {
x = xval;
y = yval; }

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Point Methods
/* Show my coordinates */

public float x() {return x;}
public float y() {return y;}

/* Point addition */
public Point add(Point p) {
float sumX = x + p.x();
float sumY = this.y() + p.y();
return new Point(sumX,sumY); }

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Point Implements Interface
PointI (in UML)

Class Point
& Interface
PointI With
More
Details

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016 CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Interfaces Can Inherit From Other
Interfaces

• Pmult extends PointI with Point
multiplication:
interface Pmult extends PointI {

public Point mult(Pmult p);
/* Point multiplication */

}

CS314 Notes 2, 2016
James M. Bieman

2-11

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Use Links / Use Dependencies

• Represent a transient connection:
– Link not represented in class state.
– Link active during method activation only.

• Object whose services will be used is
passed in as a method parameter.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Ex. Use Dependency/Link:
Adoption

• Class Mother has a method adoptChild,
which adds an adopted Child to the
family:

• Use an AdoptionAgency method:
public void adoptChild(AdoptionAgency

theAgency) {
addChild(theAgency.getChild());

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Use Link btween Mother, Child, &
AdpotionAgency in UML

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Link Summary

• Non-hierarchical association:
– Relationship: no clear whole-part or

specialization relationship.
– Duration: part of the class state; It

persists over the lifetime of the class
object.

– Implementation: define an instance variable
that is a reference to the associated link.
Use container class to support multiplicity.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Link Summary (2)

• Composition association:
– Relationship: clear whole-part relationship.
– Duration: part of the class state; It

persists over the lifetime of the class
object.

– Implementation: define an instance variable
that is a reference to the associated link.
Use a container class to support
multiplicity.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Link Summary (3)

• Inheritance link:
– Relationship: generalization-specialization.
– Duration: permanent part of the static

definition of the subclass.
– Implementation: use inheritance. In Java,

the subclass extends the superclass.

CS314 Notes 2, 2016
James M. Bieman

2-12

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Link Summary (4)
• Use links/ use dependencies:

– Relationship: one class object uses the
services of another class object.

– Duration: transient; Exists only while the
client or server methods are active.

– Implementation: client class method has a
formal parameter which is a reference to
the server class. The client invokes a
server method.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Example Design: Cave Game
Now Adventure

• Player visits a cave looking for treasure.
• Move from room to room.
• Purely text based: predates GUI’s.

– Rooms described via textual description
only.

– Players must construct their own maps, on
paper.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Cave Game Player Options

• As you go from room to room, you can:
– Look at the room,
– Go into an adjacent room or through an

adjacent door,
– Pick up an object in the room, or
– Drop an object that you are carrying.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Cave Game Commands

After reading the textual description a
player types one of the following
commands:
“n, s, e, w, u, d” for north, south, east, west,

up, or down.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

CaveGame Design-level Class Model

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Instance Diagram of a Cave Layout

CS314 Notes 2, 2016
James M. Bieman

2-13

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Implementing the Design

• The design evolves during
implementation.

• Methods added to class Room:
– void exit(int direction, Player p)
– void addItem(Item i) and

removeItem(Item i)
– Item[] getRoomContents()

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Implementing the Design (2)

• Methods added to class Player:
– boolean haveItem(Item i)
– Void setLoc(Room r)
– Room getLoc()
– String showMyThings()
– boolean handsFull()
– boolean handsEmpty()

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Model Version 2

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Player Code
class Player {

private Room myLoc;
private Item[] myThings = new Item[2];
private int itemCount = 0;
public void setRoom(Room r){

myLoc = r;
}

public String look() {
return myLoc.getDesc();
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Player Code (2)

public void go(int direction){

myLoc.exit(direction,this);

}
public void pickUp(Item i){

if (itemCount < 2) {
myThings[itemCount] = i;

itemCount++;

myLoc.removeItem(i);
}

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Room Code
class Room implements CaveSite {

private String description;
private CaveSite[] side

= new CaveSite[6];
private Vector contents = new Vector();
Room() {

side[0] = new Wall();
side[1] = new Wall();
side[2] = new Wall();
side[3] = new Wall();
side[4] = new Wall();
side[5] = new Wall();
}

CS314 Notes 2, 2016
James M. Bieman

2-14

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Room Code - Navigation
public void enter(Player p) {

p.setLoc(this);
}
public void exit(int direction,

Player p){
side[direction].enter(p);

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Wall Code
class Wall implements CaveSite {
public void enter(Player p){

System.out.println(
"Ouch! That hurts.");

}
}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Class Door Code

class Door implements CaveSite {
private Key myKey;
private CaveSite outSite;
private CaveSite inSite;
Door(CaveSite out, CaveSite in, Key k){

outSite = out;
inSite = in;
myKey = k;

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Door Navigation Code
public void enter(Player p){

if (p.haveItem(myKey)) {

System.out.println(

"Your key works! The door creaks open …”);

if (p.getLoc() == outSite) inSite.enter(p);

else if (p.getLoc() == inSite) outSite.enter(p);

}

else {System.out.println(

"You don't have the key for this door!”);}

}

}

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Common Implementation Problems

• Distribution of class functionality.
• Not recognizing dynamic binding:

– Objects know their class & will use the right
method.

• Poor encapsulation.
• Separating the user interface with the guts of

the system
Model – View separation, or
Model – View – Controller design pattern.

• Creating object configurations
Factory or Abstract Factory design pattern.

CS 314, Colorado State Univ. Copyright © James M. Bieman 2004 - 2016

Summary
• Review of OO concepts.
• UML class & instance models.
• Class links: non-hierarchical, whole-

part, generalization-specialization, &
use links.

• Design-to-code process.
• Note: UML models vary, depending

on level of abstraction.

