CS314 Notes 3. James M. Bieman

CS314, Colorado State University
Software Engineering
Notes 3:
Verification & Validation
V&v)

James M. Bieman

X\ W
WZW—ms

Software Failures

+ IRS Automated Income Tax Form
Processing System (Sperry 1980's).

+ SDI Star Wars software.

+ Ariane-5 Rocket.

+ Therac-25 Accidents.

+ Year-2000 bug.

+ London Ambulance Service Fiasco.

+ Colorado Benefits Management System (2004).

+ MS Zune failure on December 31, 2008.

+ ASCSU Course Survey failures (2011 - ?).

- Affordable Care Rollout.

XN W
wm 32

Focus: Evaluating Software Quality

+ Verification and validation (V & V) techniques
and fterminology.

+ Testing theory.

+ Functional (Black box) and structural (white
box) testing.

+ Test plans.
* Inspections.
All tied to testing object-oriented software.

X\ &
Mls 33

Validation

+ Validation refers to checking to make
sure that we are building what the
customer wants.

+ We ask:

“Did we build the right thing?”

L AR \ p
Col leman 2004-2016 3-4

Verification

+ Verification refers to checking to see if
we have built the software so that it
matches some specification.

+ We ask:

“Did we build the thing right?”

X\ W
Coj ieman 2004-2016 35

* Run the program on sample inputs.
+ Check the correctness of the output.
+ Test run success is evidence of

+ Testing is part of either verification or

Testing

correctness.

validation, or both (V & V).

X\ W
Col ieman 2004-2016 36

3-1

CS314 Notes 3. James M. Bieman

V & V Is Not Just Applied to Code

+ V &V techniques can be applied to non-
running software documents.
- Requirements specifications.
- Designs.
- Test plans.
- Documentation.

X\ W
Mﬁ 37

V & V Techniques

* Static analysis: we do not run anything.
+ Formal verification: mathematical

proofs.

+ Dynamic analysis: usually testing.
+ Inspections: semi-formal study of a

software document (really, a form of
static analysis).

XN W
Mm 38

V & V Terminology

« Software Fault: a static defect in the
software.

- Software error: an incorrect internal
state caused by a fault at runtime.

+ Software Failure: external, observable
incorrect program behavior with
respect to the explicit or expected

requirements.

Source: Ammann and Offutt, Introduction to Software Testing,
Cambridge University Press, 2008.

X\ W
Mls 39

V & V Terminology

* Testing: evaluating software by

observing its execution.

* Failure: execution that results in a

failure.

- Debugging: the process of finding a

fault given a failure.

L AR \ g
Col leman 2004-2016 3-10

Testing Terminology

* Unit testing: testing a program unit:
individual procedures, functions,
methods, or classes.

+ Integration testing: testing connection
between units and components.

+ System testing: test entire system.

+ Acceptance testing: testing to decide
whether fo purchase the software.

X\ W
Coj ieman 2004-2016 31

A High-Level View of Testing
Object-oriented Systems

+ System tests: may be developed from

- User stories.

- Use Cases™.

- System Sequence Diagrams™
*More on these UML diagrams later.

*+ Integration tests:

- Use cases and system sequence diagrams.
- Subsystem sequence diagrams.

+ Unit tests:

- Packages of classes.
- Method combinations.
- Individual methods.

X\ W
Col ieman 2004-2016 3-12

3-2

CS314 Notes 3. James M. Bieman

Testing Terminology (2)

+ Alpha testing: system testing by a user
group within the developing
organization.

* Beta testing: system testing by select
customers.

* Regression testing: retesting after a
software modification.

X\ W
Mﬁ 313

* Logic faults: omission or commission.

+ Overload: data fields are too small.

+ Timing: events are not synchronized.

* Performance: response is too slow.

* Environment: error caused by a change

Dynamic Fault Classification

in the external environment.

LAY
Mm 314

Who Should Conduct Testing?

+ Should the developer do the testing?

* Should we use an independent testing
team?

*+ How is it done in industry?

? AR § \ ~
Co} ieman 2004-2016 3-15

Test Scaffolding
or Test Harness

Allows us to test incomplete systems.

+ Test drivers/harnesses: test
components.

+ Stubs: test a system when some
components it uses are not yet
implemented.

Often a short, dummy program --- a method
with an empty body.

L AR \ g
Col leman 2004-2016 3-16

Test Oracles

+ Determine whether a test run
completed with or without
errors.

+ Often a person, who monitors
output.

- Not a reliable or efficient method.

+ Automatic oracles check output
using another program.

- Requires some kind of executable
specification.
- Asserts in JUnit.

X\ W
Co jieman 2004-2016 317

Testing Theory:
Why Is Testing So Difficult?

* Theory often tells us
what we can’ t do.

- Testing theory main () o

result: perfect testing E TR
is impossible. < (; S
i ’

X\ W
C ieman 2004-2016 3-18

CS314 Notes 3. James M. Bieman

An Abstract View of Testing

* Let program P be a function with an
input domain O (i.e., the set of all ints).
+ We seek test data 7, which will include
selected inputs of type O.
- T is a subset of D.
- T must be of finite size.
Why?

X\ W
Mﬁ 3-19

We Need a Test Oracle

+ Assume the best possible oracle --- the
specification S, which is function with
input domain O.

*+ On asingle test input /, our program
passes the test when

P() = 5()

LAY
Mm 320

For Perfect Testing

1. If all of our tests pass, then the
program is correct.

All of our tests t in test set T, P(t) = S(1),
then we can be sure that the program will
work correctly for all elements in D.

If any tests fail we look for a fault.
2. We can tell whether the program will
eventually halt and give a result for any
tinour test set T.

? AR § \ ~
Co} ieman 2004-2016 321

But, Both Requirements Are
Impossible to Satisfy.

+ 1sf requirement can be satisfied only if
T=D.
We test all elements of the input domain.

- 2nd requirement depends on a solution to
the halting problem, which has no
solution.

An undecidable problem.

?
? AR § \ ~
Cof ieman 2004-2016 3-22

Undecidable Problem

A decision problem for which it is known
to be impossible to construct a single
algorithm that always leads to a correct
yes-or-no answer. A decision problem is
any arbitrary yes-or-no question on an
infinite set of inputs [Wikipedia].

X\ W
Coj ieman 2004-2016 323

Other Undecidable Testing
Problems

+ Is a control path feasible?

Can I find data to execute a program control
path?
+ Is some specified code reachable by any
input data?
These questions cannot, /n general, be
answered.

X\ W
Col ieman 2004-2016 3-24

CS314 Notes 3. James M. Bieman

Software Testing Limitations

* There is no perfect software testing.

+ Testing can show defects, but can never
show correctness.

We may never find all of the program
errors during testing.

There is always one more “bug".

X\ W
Mﬁ 3-25

A Pragmatic Testing Strategy

* Divide domain O into sub-domains
D1, D2, ..., Dn, which represents
some aspect of the program.

- Select at least one test case from
each Di.

We cannot test each sub-domain
perfectly, but we can do better ona
piece of the functionality.

XN W
Mm 326

Software Faults, Errors & Failures

» Software Fault : A static defect in the software

» Software Error : An incorrect internal state that is the
manifestation of some fault

» Software Failure : External, incorrect behavior with respect
to the requirements or other description of the expected
behavior

Faults in software are design mistakes and will always exist

X\ W \

Fault & Failure Model (RIP Model)

Three conditions necessary for a failure to be
observed

1. Reachability : The location or locations in the
program that contain the fault must be reached.

2. Infection : The state of the program must be
incorrect.

3. Propagation : The infected state must propagate
to cause some output of the program to be
incorrect.

X\ W \

Black-Box Class Testing

* Black-Box testing: test a “component”
taking an external view.
- Use the specification to derive fest cases.
- No access to source code.

+ Black-Box class testing.

- Generate tests by analyzing the class
interface.

- Don’ 1 look at method bodies.

X\ W
Coj ieman 2004-2016 3-29

Black-Box Class Testing (2)

*+ Look at the class in isolation, and in
conjunction with other associated
classes.

+ Test each class method, and test
sequences of messages that class
objects should respond to.

* May need stubs and/or test drivers.

X\ W
Col ieman 2004-2016 3-30

CS314 Notes 3. James M. Bieman

Black-Box Class Testing (3)

* Group class objects into categories.
* Test each method for each category.

* A test plan documents all of the tests
to be performed.

An Infinite Number of Possible Inputs,
But a Finite Number of Tests

Invalid values

Account value Legal values

Return on
Investment.

Partition Inputs and Test Boundaries

Invalid values.

Boundaries

Account value

Return on
Investment.

One equivalence
partition.

Determining Equivalence
Partitions

+ Find an ordering of the class objects.
+ Example: Finding Java String objects to
test.

Canonical ordering of string objects:
g g ngow wgpn iz o

Use the ordering to select test objects.

Use the Ordering to Select Test
Cases

Find objects at extremes and next to extremes:
« Minimum size: "", "a"

- Long strings: "zz...zz", "zz...zy"
+ Middle length Strings.

Different types of Strings:

- numbers

- control characters: ""D"C"

- symbols: "&$@+->"
+ Invalid strings: a null S‘r_r‘in? variable. For C++,
you can set @ String variabfe to an integer.

Ex: Testing Java Class Stack

Stack method interface:
- boolean empty()
- Object peek()
- Object pop()
- void push(Object element)
- int search(Object element)
Boo Hiss!l This is non-stack type of operation.
Object Stack(): The default constructor.

x n ’ -

3-6

CS314 Notes 3. James M. Bieman

Classify the Operations

+ Constructors/Destructors:
- Stack()
- ~Stack() in C++
+ State changing operations:
- pop()
- push(Object e)
Non-state changing operations:
- empty()
- peek()

X\ W
Mﬁ 3-37

Test Each Type of Operation

+ Constructors: test each constructor with
all orderings of parameter boundary
values.

+ Destructors: test with each constructor.
+ State changing operations: try to change
the object state from every “state” to

every other “state”.

* Non-state changing operations: test on
stacks in each “state”.

LAY
Mm 338

“State”

* Really a group of related states.
+ Example stack states:
- Empty stacks,
- Mid-size stacks,
- Just under the maximum size stack,
- Large or full stacks.
- Empty stacks,
- Mid-size stacks,
- Just under the maximum size stacks.

? AR § \ ~
Co} ieman 2004-2016 3-39

Testing Multiplicity

+ Create several stacks and test,

alternating between them.

+ This will determine whether each stack

object has an independent state
(independent instance variables).

L AR \ g
Col leman 2004-2016 3-40

The Test Oracle

* How do you know if
an item is
successfully pushed
onto a stack?

+ Examine the
behavior of the
resulting stack after
the push operation is
performed.

X\ W
Co jieman 2004-2016 3-41

Class Testing Plan Structure

+ Class name.

* For each public method:
- Method name.

- For each test case for the method:
+ A test ID.
+ Test strategy: black-box (BB), white-box (WB), or
other; test of valid or invalid input?
+ Test description.

+ Verification: what are the expected outputs? How
do you identify success or failure?

X\ W
Col ieman 2004-2016 3-42

3-7

CS314 Notes 3. James M. Bieman

Class Stack BB Test Plan

Constructor method Stack() tests:
+ Test: Stack.Stackl

- Strategy: Black Box, Valid.

- Description: Create a Stack.

- Verification: A stack object is created; a non-null
Stack reference is returned.

Test: Stack.Stack2
- Strategy: Black Box, Valid .
- Description: Create many Stacks.

- Verification: Many stack objects are created; non-null,
not equal Stack references are returned.

X\ W
Mﬁ 343

Class Stack BB Test Plan (2)

Method push(Object e) tests:
+ Test: Stack.pushl
- Strategy: Black Box, Valid
- Description: Push one item onto a Stack.

- Verification: The item is on the top of the
stack and can be popped off.

+ Test: Stack.push2
- Strategy: Black Box, Valid
- Description: Push many items onto a Stack.

- Verification: The items can be popped off in
reverse order.

XN W
Mm 3-44

Class Stack BB Test Plan (3)

Method push(Object e) tests:
+ Test: Stack.push3
- Strategy: Black Box, Valid
- Description: Push many items onto a Stack.

- Verification: The correct items can be popped
off each stack in reverse order.

+ Test: Stack.push4
- Strategy: Black Box, Valid
- Description: Push a null item onto a Stack.
- Verification: The null object can be popped

of f.
T W e

Class Stack BB Test Plan (4)

Method push(Object e) tests:
+ Test: Stack.push5
- Strategy: Black Box, Invalid
- Description: Push an items onto a null Stack.
- Verification: An exception is raised.
- Test: Stack.pushé
- Strategy: Black Box, Invalid
- Description: Push a null item onto a non-Stack
object.

- Verification: It won’ t compile in Java; An
exception is raised in C++.

L AR \ g
Col leman 2004-2016 3-46

Class Stack BB Test Plan (5)

Method pop() tests:
+ Test: Stack.popl
- Strategy: Black Box, Valid
- Description: Pop 1 item from a Stack.
- Verification: The item can be popped off.
+ Test: Stack.pop2
- Strategy: Black Box, Valid
- Description: Pop many items from a Stack.
- Verification: The items can be popped off.

X\ W
Coj ieman 2004-2016 3-47

Class Stack BB Test Plan (6)

Method pop() tests:
+ Test: Stack.pop3
- Strategy: Black Box, Valid
- Description: Pop many items from a Stack.

- Verification: The item can be popped off in
reverse order.

+ Test: Stack.pop4
- Strategy: Black Box, Valid
- Description: Pop a null item from a Stack.
- Verification: The item can be popped off.

X\ W
Col ieman 2004-2016 3-48

3-8

CS314 Notes 3. James M. Bieman

Class Stack BB Test Plan (7)

Method pop() tests:
+ Test: Stack.popb

- Strategy: Black Box, Invalid

- Description: Pop a null Stack.

- Verification: An exception is raised.
+ Test: Stack.popb

- Strategy: Black Box, Invalid

- Description: Pop a non-Stack object.

- Verification: Will not compile in Java; raises
an exception in C++

X\ W
Mﬁ 349

Class Stack BB Test Plan (8)

Method pop() tests:
+ Test: Stack.pop7
- Strategy: Black Box, Invalid
- Description: Pop an empty Stack.
- Verification: An exception is raised.
Method empty() tests:
+ Test: Stack.emptyl
- Strategy: Black Box Valid
- Description: Test a newly created Stack.
- Verification: Returns frue.

XN W
Mm 3-50

Class Stack BB Test Plan (9)

Method empty() tests:
+ Test: Stack.empty?2
- Strategy: Black Box Valid
- Description: Test a Stack with a history of 1
push and 1 pop.
- Verification: Returns true.
+ Test: Stack.empty3
- Strategy: Black Box, Valid.

- Description: Test a Stack with many pushes,
and an equal number of pops.

- Verification: Returns true.

v AR § \ B
Co} lieman 2004-2016 3-51

Class Stack BB Test Plan (10)

Method empty() tests:
+ Test: Stack.empty4
- Strategy: Black Box Valid
- Description: Test after a push-pop-push-pop
sequence.
- Verification: Returns true.
+ Test: Stack.emptyb
- Strategy: Black Box, Valid.
- Description: Test after 1 push.
- Verification: Returns false.

L AR \ g
Col leman 2004-2016 3-52

Class Stack BB Test Plan (11)

Method empty() tests:
+ Test: Stack.emptyb
- Strategy: Black Box Valid
- Description: Test after many pushes.
- Verification: Returns false.
+ Test: Stack.empty7
- Strategy: Black Box, Invalid.
- Description: Test a null Stack.
- Verification: Exception.

X\ W
Coj ieman 2004-2016 3-53

Class Stack BB Test Plan (12)

Method empty() tests:
* Test: Stack.empty8
- Strategy: Black Box Invalid
- Description: Test a hon-Stack.

- Verification: Won’ t compile in Java.
Exception in C++,

X\ W
Col ieman 2004-2016 3-54

CS314 Notes 3. James M. Bieman

Test Drivers/Harnesses

+ Must be able to:
- Build the test cases.
- Log testing results.
- Make success or failure observable.
+ Can be
- Hard-coded.
- Reads tests from a file.
- Interactive.
- Built using a tool like Junit.
+ Each test should run independently.

X\ W
Cof ieman 2004-2016 3-55

Example Class Test Driver

Handcrafted test driver:
- No use of JUnit or similar tool.
- Not recommended. For demonstration purposes.

public class StackTest {
public static void main (String[] args)
throws TOException{

/** We run the tests **/

pushi();

push7(); /* exception handler prevents crash */
push2();

push3();

push5();

Note: push7 is an invalid test - pop an empty stack.

LAY
Col ieman 2004-2016 3-56

Black box testing example

Program specification:
« The program receives an invoice as input (invoice structure is excluded
ere).
« The invoice must be inserted into an invoice file that is sorted by date.
— It must be inserted in the appropriate position: If other invoices exist in the file with the same
date, then the invoice should be inserted after the last one.
— Consistency checks must be performed: the program should verify whether the customer is
alveagy in a corresponding file of customers, whether the customer’ s data in the two files

Test set

< Invoice whose date is the current date

+ Invoice whose date is before the current date
- Invoice whose date is the same as that of some existing invoice
— Invoice whose date does not exist in invoice file

« Incorrect invoices that can be used to check different types of
inconsistencies

X\ W
Mls 357

Testing boundary conditions

* Some programming errors are on the boundary of input
domains/partitions used for testing.

if x >y then

do something;
else

do something else
end if;

¢ Input domains
— D1:{x>y}
— D2:i{x <=y}
Easy to miss the case x=y when selecting from D2.

* Rule of thumb: test using values at the boundaries of the input
domains.

? A § \ n
[jeman 2004-2016 358

Structural Testing
(White Box Testing)

* Look at the internal program structure.

+ Tests selected to cause all “parts” of a
program to run.
- Each "part” represents a test reguirement.
- We want to test each requirement.

+ Can detect faults in implementation
structure that are not represented in
any external specification.

X\ W
Coj ieman 2004-2016 3-59

Example: String Reversal Program
Error.

Algorithm:
1. Divide input string info fixed-sized pages.
2. Push each page onto a stack.
3. Pop the characters out in reverse order.

X\ W
Col ieman 2004-2016 3-60

3-10

CS314 Notes 3. James M. Bieman

Black Box Tests

* Vary string lengths:
- Empty strings,
- Short strings,
- Long strings,
- Medium length strings.
+ All might pass the tests.

X\ W
Mﬁ 3-61

+ The programmer assumed that the last page

+ If the input string is an exact multiple of the

+ The termination character ends execution.

Hidden Bug (Fault)

is partially full.

The program appends a “null'’ termination
character, only when the last page is partially full.

page size, there is no partial page.

Without it the program fails.

XN W
Mm 362

Failures Occur “Rarely”

+ Assume that the page length is 100
characters.
1% chﬁnce that black-box testing, will reveal the

aulT.

* The specs do not mention the termination
character.

- White-box testing must cover code
branches dealing with the termination
character.

Tests must include a case where the termination
character is not appended.

v AR § \ B
Co} lieman 2004-2016 3-63

Structural (White Box) Test
Coverage Criteria.

+ Statement or node coverage.

* Branch coverage, edge coverage, or
decision coverage.

+ Condition coverage.
+ Definition/Use (DU) Pair coverages.

L AR \ g
Col leman 2004-2016 3-64

Test Coverage Strength
(subsumption)

* Branch coverage is stronger than statement
coverage (BC subsumes SC),

- Condition coverage is stronger than branch
coverage (CC subsumes SC), and

+ Definition/Use coverage is stronger than
branch coverage (DU subsumes CC).

If tests satisfy a coverage criteria, they also
satisfy all weaker ones.

(but sometimes tests that satisfy a weaker criteria
find bugs missed by tests that satisfy a stronger
criteria.)

X\ W
Coj ieman 2004-2016 3-65

Example
- Look at the code:
if (A) S1;
S2;

+ We can cover both S1 and S2 with 1 test.
Just set A=true.
+ To cover all branches, we must also test the
path that skips S1.
We need another test case where A=false.

X\ W
Col ieman 2004-2016 3-66

3-11

CS314 Notes 3. James M. Bieman

Sometimes Stronger Coverage is
Needed

* Buggy code: rj

=0; |
:‘f(A)i:I;)S;“

;
x = y/i; / \

* No error when you test with A=true.
+ Bombs if you test with A=false.

Branch coverage reveals the error, but
statement coverage may not!

X\ W
Col ieman 2004-2016 3-67

An Error, Not Detected by
Branch Coverage
/* é\eSﬁume bgoleqn F1,F2 are

., dec ared & assigned values

/ boolean B() {
if (F2){

if (AQ&&BQ))x=y+z q=0;
return true;
boolean A

.?0(- { 0{ else {

x =10/q;
return false;

return true;

else return false; }

)
X\ W “ _

We Test the Code

* Branch coverage is satisfied with 2 tests:
- Fl==true and F2==true: takes the true path.
- Fl==false and F2==false: takes the false path.
* The failure occurs when Fl==true &
F2==false.

+ Condition coverage or DU pairs coverage
would require this test.

X\ W
Mls 3-69

Tests and Test Paths

path (t) : The test path executed by test t

path (T) : The set of test paths executed by the set of
tests T

Each test executes one and only one test path

A location in a graph (node or edge) can be reached

from another location if there is a sequence of edges

from the first location to the second
— Syntactic reach : A subpath exists in the graph
— Semantic reach : A test exists that can execute that subpath

LAY
Mls 370

Tests and Test Paths

—Test
—

Deterministic software — a test always executes the same test path

—many-to-many —Test Path
A —Test Path
—Test Path
NoMetegmiNc s =a test,can exeeut@different test paths
Coj ieman 2004-2016 371

Definitions & Uses

+ Definition: the point in a program where
a variable's value is set or changed.

+ Use: the point where a variable's value is
used.

* DU-path: a program path from a
variable definition to a use, without an
intervening definition to the variable.

X\ W
Col ieman 2004-2016 3-72

3-12

CS314 Notes 3. James M. Bieman

Definition/Use (DVU) Pair Coverage
The All-Uses Coverage Criterion

* For each variable definition:
Test a def-free path to each reachable
use of the definition.

(Test one DU path for each DU-pair for each
variable.)

* In prior example: we would need
include a DU path from
definition “q = 0;” to the use “x = 10/q.”

X\ W
Mﬁ 3-73

Another Example Program

while (notDone) do { Test paths required by the

if (A) x = f(x); all-uses criterion:
- . - Loop through the then
else x = g(x); br'aﬁch Twige inarow.
- Loop through the else
} branch twice in a row.
- 1cycle through the then
+ then branch: branch followed by a cycle
First references the prior through the else branch.

value of x (a use of x) &
then rede I?ZS x (a - A cycle through the else

definition of x). branch followed by a cycle
through the then branch.

+ else branch:
Does the same thing.

X\ W l‘
Col ieman 2004-2016 3-74

Testing Limitations

* If our testing results in:
- 100% statement coverage,
- 100% branch coverage,
- 100% condition coverage,
- 100% DU-pair coverage.
* The program may still have hidden
faults.

Why is that true?

v AR § \ B
Co} lieman 2004-2016 375

White Box Testing Support Tools

+ Instrument source code to report on program
items that are “covered” during testing.
* Many tools exist. Search with the following
search words: "java test coverage tools”
- EMMA: statement coverage.
- EclEmma, which is similar to Emma, but works with
Eclipse.
- CodeCover: Includes statement, branch, and
condition-term coverage.

L AR \ g
Col leman 2004-2016 3-76

Software Inspections

+ Semi-formal evaluation of software
products for V&V.

* Organized with 2 or more “inspectors”.
* Objective: find errors early.

X\ W
Coj ieman 2004-2016 377

What to Inspect

All software documents can be reviewed:

- Requirements specifications: are they complete?
Are they correct?

- Designs: do they satisfy all requirements? Is the
design too complex? Are there errors?

- Code: look for faults.

- Documentation: look for accuracy errors. Is it
readable.

- Test plans: completeness, correctness.

X\ W
Col ieman 2004-2016 3-78

3-13

CS314 Notes 3. James M. Bieman

Inspections Focus on
Goals o
+ Find and record errors. o
>
+ Don’ t repair them. o

+ Participants review software
documents independently and then
meet to review & report findings.
(Meetings can be virtual).

X\ &
Mm 3-79

Review Guidelines [Pressman]

Review the product, not the producer.
Set an agenda and maintain it.

Limit debate and rebuttal.

Enunciate problem areas.

Take written notes.

OswN e

LAY
Mm 380

Review Guidelines [Pressman]

6. Limit the number of participants &
insist on advance preparation.

7. Develop & use a review checklist.

8. Allocate resources & time schedule.
9. Conduct training for all reviewers.
10. Review your early reviews.

? AR § \ ~
Co} ieman 2004-2016 3-81

Software Documents Are Meant
to Be Read by People

+ Commercially successful
software will be modified
many times over many
years by many people.

* Inspections are more
effective when documents
are readable.

L AR \ p
C ieman 2004-2016 3-82

Software Documents Are Meant
to Be Read by People

+ Documents should have a simple
structure, and not be verbose.

*+ Comments should add to
understandability & not restate the
obvious.

+ Avoid overly complex structures without
very strong justification. Document
these complex solutions.

X\ W
Coj ieman 2004-2016 3-83

Software That Can Be Verified

+ Is simply structured.

* Has a written, valid requirements
specification.

+ Evolved to its current form following a
well-defined development process.

X\ W
Col ieman 2004-2016 3-84

3-14

CS314 Notes 3. James M. Bieman

Summary

+ V &V involves making sure that:
- We built the right software (validation).
- We built the software right (verification).
+ Perfect testing is impossible.
+ Testing has many facets:
- What we test: from system testing o unit
testing.
- When we test: from alpha testing to
regression testing.

X\ W
Cof ieman 2004-2016 3-85

* Black box testing involves developin

+ White box (structural) testing involves

+ Rigorous testing requires a

+ Software inspections can find faults

X\ Wy
Col ieman 2004-2016 3-86

Summary

test cases in terms of the specification.

using test cases to cover all parts of the
program.

comprehensive test plan.

We saw a detailed example of a test plan for
conducting black-box class testing.

early.

3-15

