
CS314 Notes 3. James M. Bieman

3-1

Copyright © James M. Bieman 2004-2016

CS314, Colorado State University
Software Engineering

Notes 3:
Verification & Validation

(V & V)

James M. Bieman

Software Failures
• IRS Automated Income Tax Form

Processing System (Sperry 1980’s).
• SDI Star Wars software.
• Ariane-5 Rocket.
• Therac-25 Accidents.
• Year-2000 bug.
• London Ambulance Service Fiasco.
• Colorado Benefits Management System (2004).
• MS Zune failure on December 31, 2008.
• ASCSU Course Survey failures (2011 - ?).
• Affordable Care Rollout.
…

Copyright © James M. Bieman 2004-2016 3-2

Copyright © James M. Bieman 2004-2016

Focus: Evaluating Software Quality

• Verification and validation (V & V) techniques
and terminology.

• Testing theory.
• Functional (Black box) and structural (white

box) testing.
• Test plans.
• Inspections.
All tied to testing object-oriented software.

3-3 Copyright © James M. Bieman 2004-2016

Validation

• Validation refers to checking to make
sure that we are building what the
customer wants.

• We ask:

“Did we build the right thing?”

3-4

Copyright © James M. Bieman 2004-2016

Verification

• Verification refers to checking to see if
we have built the software so that it
matches some specification.

• We ask:

“Did we build the thing right?”

3-5 Copyright © James M. Bieman 2004-2016

Testing

• Run the program on sample inputs.
• Check the correctness of the output.
• Test run success is evidence of

correctness.
• Testing is part of either verification or

validation, or both (V & V).

3-6

CS314 Notes 3. James M. Bieman

3-2

Copyright © James M. Bieman 2004-2016

V & V Is Not Just Applied to Code

• V & V techniques can be applied to non-
running software documents.
– Requirements specifications.
– Designs.
– Test plans.
– Documentation.

3-7 Copyright © James M. Bieman 2004-2016

V & V Techniques

• Static analysis: we do not run anything.
• Formal verification: mathematical

proofs.
• Dynamic analysis: usually testing.
• Inspections: semi-formal study of a

software document (really, a form of
static analysis).

3-8

Copyright © James M. Bieman 2004-2016

V & V Terminology
• Software Fault: a static defect in the

software.
• Software error: an incorrect internal

state caused by a fault at runtime.
• Software Failure: external, observable

incorrect program behavior with
respect to the explicit or expected
requirements.

Source: Ammann and Offutt, Introduction to Software Testing,
Cambridge University Press, 2008.

3-9 Copyright © James M. Bieman 2004-2016

V & V Terminology

• Testing: evaluating software by
observing its execution.

• Failure: execution that results in a
failure.

• Debugging: the process of finding a
fault given a failure.

3-10

Copyright © James M. Bieman 2004-2016

Testing Terminology

• Unit testing: testing a program unit:
individual procedures, functions,
methods, or classes.

• Integration testing: testing connection
between units and components.

• System testing: test entire system.
• Acceptance testing: testing to decide

whether to purchase the software.

3-11 Copyright © James M. Bieman 2004-2016

A High-Level View of Testing
Object-oriented Systems

• System tests: may be developed from
– User stories.
– Use Cases*.
– System Sequence Diagrams*
*More on these UML diagrams later.

• Integration tests:
– Use cases and system sequence diagrams.
– Subsystem sequence diagrams.

• Unit tests:
– Packages of classes.
– Method combinations.
– Individual methods.

3-12

CS314 Notes 3. James M. Bieman

3-3

Copyright © James M. Bieman 2004-2016

Testing Terminology (2)

• Alpha testing: system testing by a user
group within the developing
organization.

• Beta testing: system testing by select
customers.

• Regression testing: retesting after a
software modification.

3-13 Copyright © James M. Bieman 2004-2016

Dynamic Fault Classification

• Logic faults: omission or commission.
• Overload: data fields are too small.
• Timing: events are not synchronized.
• Performance: response is too slow.
• Environment: error caused by a change

in the external environment.

3-14

Copyright © James M. Bieman 2004-2016

Who Should Conduct Testing?

• Should the developer do the testing?
• Should we use an independent testing

team?
• How is it done in industry?

3-15 Copyright © James M. Bieman 2004-2016

Test Scaffolding
or Test Harness

Allows us to test incomplete systems.
• Test drivers/harnesses: test

components.
• Stubs: test a system when some

components it uses are not yet
implemented.
Often a short, dummy program --- a method

with an empty body.

3-16

Copyright © James M. Bieman 2004-2016

Test Oracles
• Determine whether a test run

completed with or without
errors.

• Often a person, who monitors
output.
– Not a reliable or efficient method.

• Automatic oracles check output
using another program.
– Requires some kind of executable

specification.
– Asserts in JUnit.

3-17 Copyright © James M. Bieman 2004-2016

Testing Theory:
Why Is Testing So Difficult?

• Theory often tells us
what we can’t do.

• Testing theory main
result: perfect testing
is impossible.

3-18

CS314 Notes 3. James M. Bieman

3-4

Copyright © James M. Bieman 2004-2016

An Abstract View of Testing

• Let program P be a function with an
input domain D (i.e., the set of all ints).

• We seek test data T, which will include
selected inputs of type D.
– T is a subset of D.
– T must be of finite size.
Why?

3-19 Copyright © James M. Bieman 2004-2016

We Need a Test Oracle

• Assume the best possible oracle --- the
specification S, which is function with
input domain D.

• On a single test input i, our program
passes the test when
P(i) = S(i)

3-20

Copyright © James M. Bieman 2004-2016

For Perfect Testing

1. If all of our tests pass, then the
program is correct.

• All of our tests t in test set T, P(t) = S(t),
then we can be sure that the program will
work correctly for all elements in D.

• If any tests fail we look for a fault.
2. We can tell whether the program will

eventually halt and give a result for any
t in our test set T.

3-21 Copyright © James M. Bieman 2004-2016

But, Both Requirements Are
Impossible to Satisfy.

• 1st requirement can be satisfied only if
T= D.
We test all elements of the input domain.

• 2nd requirement depends on a solution to
the halting problem, which has no
solution.
An undecidable problem.
?

3-22

Undecidable Problem

A decision problem for which it is known
to be impossible to construct a single
algorithm that always leads to a correct
yes-or-no answer. A decision problem is
any arbitrary yes-or-no question on an
infinite set of inputs [Wikipedia].

Copyright © James M. Bieman 2004-2016 3-23 Copyright © James M. Bieman 2004-2016

Other Undecidable Testing
Problems

• Is a control path feasible?
Can I find data to execute a program control

path?
• Is some specified code reachable by any

input data?
These questions cannot, in general, be

answered.

3-24

CS314 Notes 3. James M. Bieman

3-5

Copyright © James M. Bieman 2004-2016

Software Testing Limitations

• There is no perfect software testing.
• Testing can show defects, but can never

show correctness.
We may never find all of the program

errors during testing.

There is always one more “bug”.

3-25 Copyright © James M. Bieman 2004-2016

A Pragmatic Testing Strategy

• Divide domain D into sub-domains
D1, D2, ..., Dn, which represents
some aspect of the program.

• Select at least one test case from
each Di.

We cannot test each sub-domain
perfectly, but we can do better on a
piece of the functionality.

3-26

Copyright © James M. Bieman 2004-2016

Software Faults, Errors & Failures

• Software Fault : A static defect in the software

• Software Error : An incorrect internal state that is the
manifestation of some fault

• Software Failure : External, incorrect behavior with respect
to the requirements or other description of the expected
behavior

Faults in software are design mistakes and will always exist

3-27 Copyright © James M. Bieman 2004-2016

Fault & Failure Model (RIP Model)

Three conditions necessary for a failure to be
observed

1. Reachability : The location or locations in the
program that contain the fault must be reached.

2. Infection : The state of the program must be
incorrect.

3. Propagation : The infected state must propagate
to cause some output of the program to be
incorrect.

3-28

Copyright © James M. Bieman 2004-2016

Black-Box Class Testing

• Black-Box testing: test a “component”
taking an external view.
– Use the specification to derive test cases.
– No access to source code.

• Black-Box class testing.
– Generate tests by analyzing the class

interface.
– Don’t look at method bodies.

3-29 Copyright © James M. Bieman 2004-2016

Black-Box Class Testing (2)

• Look at the class in isolation, and in
conjunction with other associated
classes.

• Test each class method, and test
sequences of messages that class
objects should respond to.

• May need stubs and/or test drivers.

3-30

CS314 Notes 3. James M. Bieman

3-6

Copyright © James M. Bieman 2004-2016

Black-Box Class Testing (3)

• Group class objects into categories.
• Test each method for each category.
• A test plan documents all of the tests

to be performed.

3-31 Copyright © James M. Bieman 2004-2016

An Infinite Number of Possible Inputs,
But a Finite Number of Tests

Legal values

Invalid values

Account value

Year

Return on
Investment.

3-32

Copyright © James M. Bieman 2004-2016

Legal values

Partition Inputs and Test Boundaries

Account value

Year

Return on
Investment.

Boundaries

One equivalence
partition.

Invalid values.

3-33 Copyright © James M. Bieman 2004-2016

Determining Equivalence
Partitions

• Find an ordering of the class objects.
• Example: Finding Java String objects to

test.
Canonical ordering of string objects:

"", "a", "b", ..., "aa", "ab", ..., "zz...zz"

• Use the ordering to select test objects.

3-34

Copyright © James M. Bieman 2004-2016

Use the Ordering to Select Test
Cases

Find objects at extremes and next to extremes:
• Minimum size: "", "a"

– Long strings: "zz...zz", "zz...zy"
• Middle length Strings.
• Different types of Strings:

– numbers
– control characters: "^D^C"
– symbols: "&$@+->“

• Invalid strings: a null String variable. For C++,
you can set a String variable to an integer.

3-35 Copyright © James M. Bieman 2004-2016

Ex: Testing Java Class Stack

Stack method interface:
– boolean empty()
– Object peek()
– Object pop()
– void push(Object element)
– int search(Object element)

Boo Hiss!! This is non-stack type of operation.
– Object Stack(): The default constructor.

3-36

CS314 Notes 3. James M. Bieman

3-7

Copyright © James M. Bieman 2004-2016

Classify the Operations
• Constructors/Destructors:

– Stack()
– ~Stack() in C++

• State changing operations:
– pop()
– push(Object e)

• Non-state changing operations:
– empty()
– peek()

3-37 Copyright © James M. Bieman 2004-2016

Test Each Type of Operation

• Constructors: test each constructor with
all orderings of parameter boundary
values.

• Destructors: test with each constructor.
• State changing operations: try to change

the object state from every “state” to
every other “state”.

• Non-state changing operations: test on
stacks in each “state”.

3-38

Copyright © James M. Bieman 2004-2016

“State”
• Really a group of related states.
• Example stack states:

– Empty stacks,
– Mid-size stacks,
– Just under the maximum size stack,
– Large or full stacks.
– Empty stacks,
– Mid-size stacks,
– Just under the maximum size stacks.

3-39 Copyright © James M. Bieman 2004-2016

Testing Multiplicity
• Create several stacks and test,

alternating between them.
• This will determine whether each stack

object has an independent state
(independent instance variables).

3-40

Copyright © James M. Bieman 2004-2016

The Test Oracle

• How do you know if
an item is
successfully pushed
onto a stack?

• Examine the
behavior of the
resulting stack after
the push operation is
performed.

3-41 Copyright © James M. Bieman 2004-2016

Class Testing Plan Structure

• Class name.
• For each public method:

– Method name.
– For each test case for the method:

• A test ID.
• Test strategy: black-box (BB), white-box (WB), or

other; test of valid or invalid input?
• Test description.
• Verification: what are the expected outputs? How

do you identify success or failure?

3-42

CS314 Notes 3. James M. Bieman

3-8

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan
Constructor method Stack() tests:
• Test: Stack.Stack1

– Strategy: Black Box, Valid.
– Description: Create a Stack.
– Verification: A stack object is created; a non-null

Stack reference is returned.
• Test: Stack.Stack2

– Strategy: Black Box, Valid .
– Description: Create many Stacks.
– Verification: Many stack objects are created; non-null,

not equal Stack references are returned.

3-43 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (2)
Method push(Object e) tests:
• Test: Stack.push1

– Strategy: Black Box, Valid
– Description: Push one item onto a Stack.
– Verification: The item is on the top of the

stack and can be popped off.
• Test: Stack.push2

– Strategy: Black Box, Valid
– Description: Push many items onto a Stack.
– Verification: The items can be popped off in

reverse order.

3-44

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (3)
Method push(Object e) tests:
• Test: Stack.push3

– Strategy: Black Box, Valid
– Description: Push many items onto a Stack.
– Verification: The correct items can be popped

off each stack in reverse order.
• Test: Stack.push4

– Strategy: Black Box, Valid
– Description: Push a null item onto a Stack.
– Verification: The null object can be popped

off.

3-45 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (4)
Method push(Object e) tests:
• Test: Stack.push5

– Strategy: Black Box, Invalid
– Description: Push an items onto a null Stack.
– Verification: An exception is raised.

• Test: Stack.push6
– Strategy: Black Box, Invalid
– Description: Push a null item onto a non-Stack

object.
– Verification: It won’t compile in Java; An

exception is raised in C++.

3-46

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (5)

Method pop() tests:
• Test: Stack.pop1

– Strategy: Black Box, Valid
– Description: Pop 1 item from a Stack.
– Verification: The item can be popped off.

• Test: Stack.pop2
– Strategy: Black Box, Valid
– Description: Pop many items from a Stack.
– Verification: The items can be popped off.

3-47 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (6)
Method pop() tests:
• Test: Stack.pop3

– Strategy: Black Box, Valid
– Description: Pop many items from a Stack.
– Verification: The item can be popped off in

reverse order.
• Test: Stack.pop4

– Strategy: Black Box, Valid
– Description: Pop a null item from a Stack.
– Verification: The item can be popped off.

3-48

CS314 Notes 3. James M. Bieman

3-9

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (7)
Method pop() tests:
• Test: Stack.pop5

– Strategy: Black Box, Invalid
– Description: Pop a null Stack.
– Verification: An exception is raised.

• Test: Stack.pop6
– Strategy: Black Box, Invalid
– Description: Pop a non-Stack object.
– Verification: Will not compile in Java; raises

an exception in C++

3-49 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (8)
Method pop() tests:
• Test: Stack.pop7

– Strategy: Black Box, Invalid
– Description: Pop an empty Stack.
– Verification: An exception is raised.

Method empty() tests:
• Test: Stack.empty1

– Strategy: Black Box Valid
– Description: Test a newly created Stack.
– Verification: Returns true.

3-50

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (9)
Method empty() tests:
• Test: Stack.empty2

– Strategy: Black Box Valid
– Description: Test a Stack with a history of 1

push and 1 pop.
– Verification: Returns true.

• Test: Stack.empty3
– Strategy: Black Box, Valid.
– Description: Test a Stack with many pushes,

and an equal number of pops.
– Verification: Returns true.

3-51 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (10)
Method empty() tests:
• Test: Stack.empty4

– Strategy: Black Box Valid
– Description: Test after a push-pop-push-pop

sequence.
– Verification: Returns true.

• Test: Stack.empty5
– Strategy: Black Box, Valid.
– Description: Test after 1 push.
– Verification: Returns false.

3-52

Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (11)

Method empty() tests:
• Test: Stack.empty6

– Strategy: Black Box Valid
– Description: Test after many pushes.
– Verification: Returns false.

• Test: Stack.empty7
– Strategy: Black Box, Invalid.
– Description: Test a null Stack.
– Verification: Exception.

3-53 Copyright © James M. Bieman 2004-2016

Class Stack BB Test Plan (12)

Method empty() tests:
• Test: Stack.empty8

– Strategy: Black Box Invalid
– Description: Test a non-Stack.
– Verification: Won’t compile in Java.

Exception in C++.

3-54

CS314 Notes 3. James M. Bieman

3-10

Copyright © James M. Bieman 2004-2016

Test Drivers/Harnesses
• Must be able to:

– Build the test cases.
– Log testing results.
– Make success or failure observable.

• Can be
– Hard-coded.
– Reads tests from a file.
– Interactive.
– Built using a tool like Junit.

• Each test should run independently.

3-55 Copyright © James M. Bieman 2004-2016

Example Class Test Driver
Handcrafted test driver:

– No use of JUnit or similar tool.
– Not recommended. For demonstration purposes.

public class StackTest {
public static void main (String[] args)

throws IOException{
/** We run the tests **/
push1();
push7(); /* exception handler prevents crash */
push2();
push3();
push5();

}
Note: push7 is an invalid test – pop an empty stack.

3-56

Black box testing example

Program specification:
• The program receives an invoice as input (invoice structure is excluded

here).
• The invoice must be inserted into an invoice file that is sorted by date.

– It must be inserted in the appropriate position: If other invoices exist in the file with the same
date, then the invoice should be inserted after the last one.

– Consistency checks must be performed: the program should verify whether the customer is
already in a corresponding file of customers, whether the customer’s data in the two files
match, …

Test set
• Invoice whose date is the current date
• Invoice whose date is before the current date

– Invoice whose date is the same as that of some existing invoice
– Invoice whose date does not exist in invoice file

• Incorrect invoices that can be used to check different types of
inconsistencies

Copyright © James M. Bieman 2004-2016 3-57

Testing boundary conditions
• Some programming errors are on the boundary of input

domains/partitions used for testing.

if x > y then
do something;

else
do something else

end if;

• Input domains
– D1:{x>y}
– D2:{x <= y}

Easy to miss the case x=y when selecting from D2.

• Rule of thumb: test using values at the boundaries of the input
domains.

Copyright © James M. Bieman 2004-2016 3-58

Copyright © James M. Bieman 2004-2016

Structural Testing
(White Box Testing)

• Look at the internal program structure.
• Tests selected to cause all “parts” of a

program to run.
– Each “part” represents a test requirement.
– We want to test each requirement.

• Can detect faults in implementation
structure that are not represented in
any external specification.

3-59 Copyright © James M. Bieman 2004-2016

Example: String Reversal Program
Error.

Algorithm:
1. Divide input string into fixed-sized pages.
2. Push each page onto a stack.
3. Pop the characters out in reverse order.

3-60

CS314 Notes 3. James M. Bieman

3-11

Copyright © James M. Bieman 2004-2016

Black Box Tests

• Vary string lengths:
– Empty strings,
– Short strings,
– Long strings,
– Medium length strings.

• All might pass the tests.

3-61 Copyright © James M. Bieman 2004-2016

Hidden Bug (Fault)

• The programmer assumed that the last page
is partially full.
The program appends a “null'' termination

character, only when the last page is partially full.
• If the input string is an exact multiple of the

page size, there is no partial page.
• The termination character ends execution.

Without it the program fails.

3-62

Copyright © James M. Bieman 2004-2016

Failures Occur “Rarely”
• Assume that the page length is 100

characters.
1% chance that black-box testing, will reveal the

fault.
• The specs do not mention the termination

character.
• White-box testing must cover code

branches dealing with the termination
character.
Tests must include a case where the termination

character is not appended.

3-63 Copyright © James M. Bieman 2004-2016

Structural (White Box) Test
Coverage Criteria.

• Statement or node coverage.
• Branch coverage, edge coverage, or

decision coverage.
• Condition coverage.
• Definition/Use (DU) Pair coverages.
…

3-64

Copyright © James M. Bieman 2004-2016

Test Coverage Strength
(subsumption)

• Branch coverage is stronger than statement
coverage (BC subsumes SC),

• Condition coverage is stronger than branch
coverage (CC subsumes SC), and

• Definition/Use coverage is stronger than
branch coverage (DU subsumes CC).

If tests satisfy a coverage criteria, they also
satisfy all weaker ones.
(but sometimes tests that satisfy a weaker criteria

find bugs missed by tests that satisfy a stronger
criteria.)

3-65 Copyright © James M. Bieman 2004-2016

Example

• Look at the code:
if (A) S1;
S2;

• We can cover both S1 and S2 with 1 test.
Just set A=true.

• To cover all branches, we must also test the
path that skips S1.
We need another test case where A=false.

3-66

CS314 Notes 3. James M. Bieman

3-12

Copyright © James M. Bieman 2004-2016

Sometimes Stronger Coverage is
Needed

• Buggy code:
i = 0;
if (A) i = 1;
x = y/i;

• No error when you test with A=true.
• Bombs if you test with A=false.
Branch coverage reveals the error, but

statement coverage may not!

3-67 Copyright © James M. Bieman 2004-2016

An Error, Not Detected by
Branch Coverage

/* Assume boolean F1, F2 are
declared & assigned values

*/
...

if (A() && B()) x = y + z;
...

boolean A() {
if (F1) {

q = 0;
return true;

}
else return false;

}

...

boolean B() {
if (F2) {

q = 0;
return true;

}
else {

x = 10/q;
return false;
}

}

3-68

Copyright © James M. Bieman 2004-2016

We Test the Code

• Branch coverage is satisfied with 2 tests:
– F1==true and F2==true: takes the true path.
– F1==false and F2==false: takes the false path.

• The failure occurs when F1==true &
F2==false.

• Condition coverage or DU pairs coverage
would require this test.

3-69

Tests and Test Paths
• path (t) : The test path executed by test t

• path (T) : The set of test paths executed by the set of
tests T

• Each test executes one and only one test path

• A location in a graph (node or edge) can be reached
from another location if there is a sequence of edges
from the first location to the second
– Syntactic reach : A subpath exists in the graph

– Semantic reach : A test exists that can execute that subpath

Copyright © James M. Bieman 2004-2016 3-70

Tests and Test Paths
–test 1

–test 2

–test 3

–many-to-one

–test 1

–test 2

–test 3

–many-to-many
–Test Path

1

–Test Path
2

–Test Path
3

Non-deterministic software – a test can execute different test paths

–Test
Path

Deterministic software – a test always executes the same test path

Copyright © James M. Bieman 2004-2016 3-71 Copyright © James M. Bieman 2004-2016

Definitions & Uses

• Definition: the point in a program where
a variable’s value is set or changed.

• Use: the point where a variable’s value is
used.

• DU-path: a program path from a
variable definition to a use, without an
intervening definition to the variable.

3-72

CS314 Notes 3. James M. Bieman

3-13

Copyright © James M. Bieman 2004-2016

Definition/Use (DU) Pair Coverage
The All-Uses Coverage Criterion

• For each variable definition:
Test a def-free path to each reachable
use of the definition.

(Test one DU path for each DU-pair for each
variable.)

• In prior example: we would need
include a DU path from
definition “q = 0;” to the use “x = 10/q;”

3-73 Copyright © James M. Bieman 2004-2016

Another Example Program
while (notDone) do {
if (A) x = f(x);
else x = g(x);
...
}

• then branch:
First references the prior
value of x (a use of x) &
then redefines x (a
definition of x).

• else branch:
Does the same thing.

Test paths required by the
all-uses criterion:
– Loop through the then

branch twice in a row.
– Loop through the else

branch twice in a row.
– 1 cycle through the then

branch followed by a cycle
through the else branch.

– A cycle through the else
branch followed by a cycle
through the then branch.

3-74

Copyright © James M. Bieman 2004-2016

Testing Limitations
• If our testing results in:

– 100% statement coverage,
– 100% branch coverage,
– 100% condition coverage,
– 100% DU-pair coverage.

• The program may still have hidden
faults.

Why is that true?

3-75 Copyright © James M. Bieman 2004-2016

White Box Testing Support Tools

• Instrument source code to report on program
items that are “covered” during testing.

• Many tools exist. Search with the following
search words: “java test coverage tools”
– EMMA: statement coverage.
– EclEmma, which is similar to Emma, but works with

Eclipse.
– CodeCover: Includes statement, branch, and

condition-term coverage.

3-76

Copyright © James M. Bieman 2004-2016

Software Inspections

• Semi-formal evaluation of software
products for V&V.

• Organized with 2 or more “inspectors”.
• Objective: find errors early.

3-77 Copyright © James M. Bieman 2004-2016

What to Inspect

All software documents can be reviewed:
– Requirements specifications: are they complete?

Are they correct?
– Designs: do they satisfy all requirements? Is the

design too complex? Are there errors?
– Code: look for faults.
– Documentation: look for accuracy errors. Is it

readable.
– Test plans: completeness, correctness.

3-78

CS314 Notes 3. James M. Bieman

3-14

Copyright © James M. Bieman 2004-2016

Inspections Focus on
Goals

• Find and record errors.
• Don’t repair them.
• Participants review software

documents independently and then
meet to review & report findings.
(Meetings can be virtual).

3-79 Copyright © James M. Bieman 2004-2016

Review Guidelines [Pressman]

1. Review the product, not the producer.
2. Set an agenda and maintain it.
3. Limit debate and rebuttal.
4. Enunciate problem areas.
5. Take written notes.

3-80

Copyright © James M. Bieman 2004-2016

Review Guidelines [Pressman]

6. Limit the number of participants &
insist on advance preparation.

7. Develop & use a review checklist.
8. Allocate resources & time schedule.
9. Conduct training for all reviewers.
10. Review your early reviews.

3-81 Copyright © James M. Bieman 2004-2016

Software Documents Are Meant
to Be Read by People

• Commercially successful
software will be modified
many times over many
years by many people.

• Inspections are more
effective when documents
are readable.

3-82

Copyright © James M. Bieman 2004-2016

Software Documents Are Meant
to Be Read by People

• Documents should have a simple
structure, and not be verbose.

• Comments should add to
understandability & not restate the
obvious.

• Avoid overly complex structures without
very strong justification. Document
these complex solutions.

3-83 Copyright © James M. Bieman 2004-2016

Software That Can Be Verified

• Is simply structured.
• Has a written, valid requirements

specification.
• Evolved to its current form following a

well-defined development process.

3-84

CS314 Notes 3. James M. Bieman

3-15

Copyright © James M. Bieman 2004-2016

Summary

• V & V involves making sure that:
– We built the right software (validation).
– We built the software right (verification).

• Perfect testing is impossible.
• Testing has many facets:

– What we test: from system testing to unit
testing.

– When we test: from alpha testing to
regression testing.

3-85 Copyright © James M. Bieman 2004-2016

Summary
• Black box testing involves developing

test cases in terms of the specification.
• White box (structural) testing involves

using test cases to cover all parts of the
program.

• Rigorous testing requires a
comprehensive test plan.
We saw a detailed example of a test plan for

conducting black-box class testing.
• Software inspections can find faults

early.

3-86

