
CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-1

4-1CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

CS314, Colorado State University
Software Engineering

Notes 4: Principles of Design and
Architecture for OO Software

James M. Bieman

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Focus: Determining the Overall Structure
of a Software System

• Describes the process of software
design.

• Provides guidelines to develop & assess
high-quality software designs & design
components.

• Overview of architectural structures &
control options.

• Design Patterns.

4-2

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Process Overview

• Software design involves deriving a solution to
the problem to be solved via a software
system.

• Software design: an abstract model of the
system to be built to solve the problem.

• The development of a solution involves model
derivation at several levels of abstraction.
We move from an informal design towards a fully

formal implementation.

4-3 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

At Each Level of Abstraction

1. Study and understand the problem.
2. Identify one or more solutions.

Choose a solution based on a designer's
experience and available resources.

3. Describe the solution abstractions or
models.

Use graphical,formal, or other notations.

4-4

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Phases

• System architecture: define
connections between the system &
external entities.

• Architectural design: identify sub-
systems.

• Interface design: sub-system
interfaces.

4-5 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Phases

• Component design: decompose sub-
systems into components.

• Data structure design: data
structures to represent state
information.

• Algorithm design: component
implementations.

4-6

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-2

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Quality Goals

• Most efficient: make the most efficient
use of resources.

• Cheapest: minimize development cost.
Use a minimum of development time.

• Most maintainable: the system design is
easy to understand and easy to modify.

Maintenance costs predominate.

4-7 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Principles [Al Davis]

• Consider alternatives. Don't just use
the first design idea.

• Don't reinvent the wheel.
• Minimize intellectual distance from the

problem.

4-8

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Principles [Al Davis]

• The design should exhibit uniformity.
• The design structure should

accommodate change.
• Structure the design so that it can

degrade gently.
• Review the design to minimize

conceptual errors.

4-9 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Components & Their Context

Component: a piece of a design.
– A class or a collection of classes.
– “A unit of composition with contractually

specified interfaces & explicit context
dependencies” [Szyperski 1998].

4-10

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Component Parts

1. Interface: contract between
component & users.

2. Secrets: hidden from component
users.

4-11 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Component Design Quality: Cohesion

“Do component parts belong together?”
• A design component should implement a

single logical entity or functionality.
• When components are cohesive, change

can be localized.
A change can be limited to a single

component.
• We aim for strong cohesion.

4-12

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-3

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Cohesion Levels: From Weakest to
Strongest.

1. Coincidental cohesion (weak): unrelated parts
are bundled together.

2. Logical association (weak): component parts
with similar functionality are grouped
together.

3. Temporal cohesion (weak): component parts
that run at the same time are grouped.

4. Procedural cohesion (weak): component parts
make up a single control sequence.

4-13 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Cohesion Levels: From Weakest to
Strongest.

5. Communicational cohesion (medium):
component elements operate on the
same input or produce the same
output.

6. Sequential cohesion (medium): output
of one component part is the input to
another part.

4-14

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Cohesion Levels: From Weakest to
Strongest.

7. Functional cohesion (strong): each
component part is necessary for the
execution of a single function.

8. Object cohesion (strong): each
operation provides functionality that
allows object attributes to be
modified or inspected.

4-15 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coincidental Cohesion Example
int f(int i, float x, float y) {

count++;
println("Sum is: " + (x+y));
return(i + count);

}

4-16

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Temporal Cohesion Example

void initialize {...}
void cleanup {...}

4-17 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Communicational Cohesion

void a2c(File data, char choice) {
switch (choice)

case `a': ... read data ...; break;
case `b': ... write data to disk ...; break;
case `c': ... generate data reports; ...
}

4-18

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-4

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Component Coupling

How strong are the interconnections between
components?

• Loose (or weak) coupling: a change to one
component is not likely to affect other
components.

• Shared variables or control information
exchange leads to tight (or strong) coupling.

Aim for weak coupling.

4-19 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coupling in the CIV System

• 60 Classes
• 10 KLOC

•150 Classes with
3rd party
classes.

4-20

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Detailed Call-Graph of CIV

Shows 3% of
the entire call
graph.

4-21 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

CIV Class Inheritance Graph

Shows 20%
of the entire
graph.

4-22

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

AdventureGame Design-level Class Model

4-23 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Revised AdventureGame Design

4-24

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-5

An Architectural View of the
AdventureGame Design

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016 4-25 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Tight Coupling Due to Shared Data

Shared Data

Module A Module B Module C

4-26

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Loose Coupling Through Message Passing

Module A
A’s Data

A’s Services

Module B
B’s Data

B’s Services

Module C
C’s Data

C’s Services

• No shared data.
• Classes are also coupled to their super-classes.

4-27 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coupling

• Aim for weak or
loose coupling.

• Aim for less
coupling.

Minimize the number
of couplings and
avoid promiscuity!

4-28

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coupling Levels: From Weak to Strong
Coupling

1. No coupling: modules have no links.
2. Data coupling (low): modules are

coupled via simple argument lists.
3. Stamp coupling (low): modules are

coupled via a portion of an argument's
data structure.

4-29 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coupling Levels: From Weak to Strong
Coupling

4. Control coupling (moderate): A control
flag is passed as a parameter.

5. External coupling (high): modules are
coupled to an external environment.

4-30

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-6

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Coupling Levels: From Weak to Strong
Coupling

6. Common coupling (high): common
references to a global variable.

7. Content coupling (highest): module uses
information inside another module, or
branches into the middle of a module.

4-31 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Increasing Cohesion & Reducing Coupling

1. Evaluate the first iteration of a program.
Explode (split) or implode (merge) modules to

improve cohesion or coupling.
2. Minimize structures with high fan-out;

Strive for fan-in.
• Fan-out: the other modules affected by a

module.
• Fan-in: the modules that affect a module.

3. Keep the scope of module effect within the
scope of the control of that module.

4-32

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Increasing Cohesion & Reducing Coupling

4. Evaluate module interfaces to reduce
complexity, redundancy, and improve
consistency.

5. Define modules whose function is
predictable, but avoid modules that
are overly restrictive.

6. Strive for controlled entry modules.

4-33 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Seek Module Understandability

• Can a module be understood on its own?
• Good designs:

– Use meaningful names; names should
reflect the intent of a construct, not its
implementation.

– Have accurate design documentation.
– Avoid complexity.

• A module must be understood in its
design context.

4-34

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Architectural Configurations

• Hierarchical (tree) structures are
common: inheritance & composition.

• Pipeline architectures: compilers.
• Layered: operating systems.
• Client servers.

4-35 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Pipeline Architecture Example: Compiler
Design

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

Source
code

tokens
parse
tree Executable

code

4-36

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-7

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Level 2
Application

Level 1
Data base

Layered or Abstract-Machine
Architecture

Level 0
OS

4-37 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Distributed Architectures:
Client/Server Systems

• Client: service user.
• Server: service provider.
• Clients & Servers can reside on

different computers.
• Key concern: the interface connecting

clients and servers.

4-38

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Linking C/S Components

• Pipes: used in UNIX/Linus systems.
• Remote procedure/method calls: invoke

program on a different machine.
rmi in Java

• Client/server SQL interaction: for
database queries.

4-39 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Client/Server Components

• GUI: usually runs on the client.
• Application: may run on either client or

server.
• Database management: usually runs on server.
• Middleware: connects client & servers.

– Network OS support.
– Object-request brokers.
– Communication management.

4-40

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Object-Request Broker (ORB)

• Client object sends message to
encapsulated server object.

• An ORB intercepts the message &
manages the communication.
– Finds the server object.
– Invokes server object methods.
– Passes data between client & server.

4-41 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

CORBA Architecture

ORB

Client
IDL IDL

Obj Impl

ORB

Client
IDL IDL

Obj Impl

ORB

Client
IDL

ORB

IDL
Obj Impl

4-42

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-8

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Control Options

• Centralized control:
– Call-return model uses a hierarchy of

components.
– Manager model for concurrent systems.

Controller that spawns tasks.
• Broadcast event-driven control:

– Subsystems register interest in events.
– Event handler notifies registered entities

when an event occurs.

4-43 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Centralized Control:
Call - Return Model

Main

C1 C2 C3

C1.1 C1.2 C3.1

4-44

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Centralized Control: Manager Model for
Concurrent Systems

System
Controller

Sensor
Process

Actuator
Process

Computation
Process

User
Interface

Fault
Handler

4-45 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broadcast Model for Event - Driven
Control

Event Handler

Subsystem 1 Subsystem 2 Subsystem N

4-46

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Interrupt-Driven Mechanism
• Interrupt handler for each type of

interrupt.
• Each interrupt type is associated to a

specific memory location.
• A hardware switch transfers control to

a handler.
• Switching is very fast.
• Very difficult to test & validate.

4-47 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Object-Oriented Design Patterns

• Design pattern:
“Each pattern describes a problem which

occurs over and over again … and then
describes the core of the solution”
[Christopher Alexander].

• Design patterns focus on flexible
designs --- designs that can be more
easily adapted and reused.

4-48

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-9

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Design Patterns

• We learn from experience.
• Design pattern purpose: codify good

solutions to common design problems.
• Allows us to take advantage of the

experiences of other software
engineers.

4-49 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

What is a Design Pattern?

• Idioms for structuring object-
oriented designs.

• Pattern structure:
1. Pattern name.
2. Problem solved by the pattern.
3. Solution.
4. Consequences.

4-50

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Façade Design Pattern
• Provides a unified interface to a set of interfaces in a

subsystem.
• Defines a higher level interface for use by external

clients.
• Minimizes dependencies between subsystems.
• A Façade object, rather than internal subsystem

objects, becomes the client of all external clients.
• Clients need not know or depend upon details of the

subsystems design.

4-51 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Façade Example

Client 2Client 1

System

Without Façade

Client 2Client 1

System

With Façade

Façade

4-52

Façade in the AdventureGame Design

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016 4-53 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Model-View-Controller (MVC) Pattern

• A computer should look like an appliance:
A TV, radio, calculator, microwave, etc.

• Appliances have:
– A view: TV screen, radio dial, etc.
– Controls: switches, buttons dials.
– Functional parts: the model.

4-54

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-10

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Pattern For GUI Software

• User interfaces are commonly modified.
– New functionality requires new & updated

menus.
– User interfaces are often adapted for

specific customers.
– User interfaces are often ported to new

platforms.
• User interfaces should not be tightly

coupled to the functional code.

4-55 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Components

• Model: the core functionality of the
system.
– This functionality is independent of the

output representation or the input
behavior.

– Registers views and controllers.
– Notifies them when the model state

changes.

4-56

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Components

• View: components that display
information.
– Multiple views are allowed.
– View objects register with the model.
– They retrieve data from the model when

notified of an update.

4-57 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Components

• Controller: the input component.
– There may be a controller for each view.
– The controller receives input.

It interprets mouse movement, buttons, and/or keyboard
input.

– Inputs are received as events, which are
translated by the controller into requests for
service.

– Service requests are sent to the model or view.
– Users interact solely via controllers.

4-58

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Model-View-Controller

50 20 30

50
20

30

OK

Monitor

50
20
30

Model

Controller

View 2

View 1

4-59 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Views Are Easily Changed

• Change a menu into a GUI.
• Add a new display device.
• Change appearance of screens.
No need to change the main functionality

(the model).

4-60

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-11

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Class Model

4-61 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Scenario 1

User input changes the model, views, &
controller.

1. Controller accepts user input & requests services
of the model.

2. Model performs the service changing model data.
3. Model notifies all registered views & controllers.
4. Views request changed data from model &

redisplays changed data & updates menus.
5. Control return to original controller.

4-62

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

MVC Scenario 2

MVC initialization:
1. Model instance is created & its data.
2. For each view:

1. View object is created; It has a reference to the
model.

2. View registers with the model.
3. View creates its controller, passing a reference to the

model & itself.
4. Controller registers with the model.

3. The application begins to respond to events.

4-63 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Simplified MVC
• Full MVC may not be needed.
• Key: separate the MVC functionalities.
• Simple MVC for AdventureGame.java:

– View object wrapper with a
View.displayText() method.

– Add View attributes to Classes that need
it, which are set when initializing the
model.

– CaveGame object acts as the controller.

4-64

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Abstract Factory Pattern
• Allows us to construct an object

configuration, without specifying the
components.

• Provides an interface for creating families of
related objects without specifying their
concrete classes.

• Supports:
– Systems that should be independent of how its

products are created, composed, and represented.
– Configuring a system with one of multiple families

of products.

4-65 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Abstract Factory
Implementation Mechanisms

• The method that constructs the
configuration has a factory object as a
parameter.

• The factory object actually instantiates
the objects.

• Client knows only about abstract classes
(or interface).

4-66

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-12

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Analogy

• We need to build a car, but don’t know what
kind of car you are building.

• Cars are built the same way: all have engines,
wheels, seats, brakes, etc.

• The specific parts differ between models.
• We specify the construction, but not the

specific parts using Abstract Factory.

4-67 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Abstract Factory Structure

4-68

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Example For Adventure Cave
Object Configuration

• Cave configuration may remain the
same, but we may have different kinds
of rooms, walls, etc. for different
levels.

• We describe the cave labyrinth in
terms of abstract entities or
interfaces.

• We define a different concrete factory
for each level.

4-69 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Possible Code Structure

interface CaveFactory {
Door makeDoor(CaveSite in, Key k, CaveSite
out);

Wall makeWall();
Room makeRoom();
Player makePlayer();
Key makeKey();

}

4-70

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Building a Cave Configuration
public class Labyrinth{
…
public Room createLabyrinth(CaveFactory f) {

Room outside = f.makeRoom();
Room cell = f.makeRoom();
Key k = f.makeKey();
Door d = f.makeDoor(outside, k, cell);
….
return cell;

}

Use a different
CaveFactory for

each level

4-71 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Level 1 Concrete Cave Factory

Class Level1CaveFactory
implements CaveFactory {

// Builds Level 1 rooms, walls, doors, …
Door makeDoor(CaveSite in, Key k, CaveSite out){

…}
Wall makeWall() {…}
Room makeRoom() {…}
Player makePlayer() {…}
Key makeKey() {…}

}

4-72

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-13

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Level 2 Concrete Cave Factory

Class Level2CaveFactory
implements CaveFactory {

// Builds Level 2 rooms, walls, doors, …
Door makeDoor(CaveSite in, Key k, CaveSite out){

…}
Wall makeWall() {…}
Room makeRoom() {…}
Player makePlayer() {…}
Key makeKey() {…}

}

4-73 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

With Abstract Factory Pattern

• You don’t have to modify code in the
basic cave system structure to change
levels.

• A Concrete Factory can extend another
Concrete Factory.
A Level n+1 factory can extend a Level n

factory.

4-74

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Pattern for Client/Server
Architectures

• Decouples clients and servers.
– Servers register with the brokers.
– Clients send brokers requests for services.
– Brokers locate an appropriate server, forwards

request to server, and transmits results back to
the client.

– Clients don’t deal with low-level communication
details.

• Allows dynamic change, addition, deletion,
& relocation of objects.

4-75 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Components

• Clients: access servers.
– Example: WWW browsers.
– Need not know the location of servers.

• Servers: implements objects.
– Export interfaces: interface definition

language (IDL) or a binary standard.
– Example: WWW servers give access to

HTML pages, CGI scripts, applets.

4-76

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Components
• Brokers:

– Transmits requests from client to server &
results from server to client.

– Must have a way to locate & activate
servers.

– Offers:
• APIs to clients & servers.
• operations to register servers.
• Operations to invoke server methods.

– May pass a request to a remote broker.

4-77 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Components

• Client-side proxies: layer between clients
and the broker.
– Allows a remote object to appear to be local.
– Hides implementation details from client.

• Server-side proxies: layer between
servers & broker.
Unpack incoming messages.

• Bridges: hide implementation details when
2 brokers communicate.

4-78

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-14

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Pattern Structure

4-79 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Scenario 1

Server registers with the local broker:
1. Broker is initialized, then enters event

loop.
2. User starts a server application. It

registers with the broker.
3. The broker receives the registration

request, records & acknowledges it.
4. Server waits for incoming client requests.

4-80

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Scenario 2

Client sends a request to a local server:
1. Client invokes a remote server object method.
2. Client-side proxy packages parameters into a

message and sends it to the local broker.
3. The broker finds location of the server & sends

the message to the server-side proxy.
4. Server-side proxy unpacks parameters etc and

invokes the requested service.

4-81 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Scenario 2

5. Server returns result to server-side
proxy, which packages it into a message &
sends it to the broker.

6. The broker forwards the response to the
client-side proxy.

7. The client-side proxy unpacks the results
& returns it to the client.

4-82

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Scenario 3

Interaction between remote brokers using bridges:
1. Broker A receives an incoming request. It locates the

remote server & forwards the request to a remote
broker.

2. Bridge Message is passed from Broker A to Bridge A.
3. A converts the message to a common protocol & sends

the message to Bridge B at the server site.
4. Bridge B maps the request into a Broker B format.
5. Broker B handles the request.

4-83 CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Broker Pattern Examples

• CORBA: common object request broker
architecture, an Object Management Group
(OMG) standard, with an Interface Definition
Language (IDL).

• IBM SOM/DSOM.
• Microsoft OLE: defines a binary standard for

accessing server interfaces.
• The WWW.

4-84

CS 314 Colorado State University, Notes 4

Principles of Design & Architecture for OO Software

2016

James M. Bieman

4-15

CS 314 Colorado State Univ. Copyright © James M. Bieman 2004-2016

Summary
• The design process aims to refine solution

models until they can run.
• Design quality involves modules with high

cohesion and weak coupling.
• Architectures represent coherent high-

level views of system structure.
– Overall structure: hierarchical, pipelines,

layers, client/server.
– Control structure: centralized, decentralized.
– Architectural design patterns:

• Model-View-Controller.
• Broker.
• Abstract Factory.

4-85

