
CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-1

5-1CSU CS314 Copyright © James M. Bieman 2000-2016

CSU CS 314
Software Engineering Notes 5:
Requirements Analysis for OO

Software

James M. Bieman

1

What should we build?

CSU CS314 Copyright © James M. Bieman 2000-2016 5-2

CSU CS314 Copyright © James M. Bieman 2000-2016

Focus: Determining and Modeling
Requirements

• Overview of requirements.
• Requirements documents.
• Use-case analysis.
• System operations.
• Domain/conceptual modeling.
• Evaluating requirements.

5-3 CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements
We must define software needs precisely, yet most

human problems are not precisely understood.

Required
Behavior
(vague
ideas)

Precise Specification
Of Need

5-4

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements in the Software
Process

Application
Domain

Domain/conceptual
Models (informal).

Design Models
(more formal).

Implementation
(formal).

5-5 CSU CS314 Copyright © James M. Bieman 2000-2016

Consider a Hotel Front Desk
• Guest check-in, check-out.
• Track restaurant tabs.
• Reservations.
• Keys.
• Maintenance.
• Housekeeping.

5-6

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-2

CSU CS314 Copyright © James M. Bieman 2000-2016

Income Tax Software
• Tax code is not formally defined.

Meaning is determined case by case via court
decisions.

• Yet, tax software precisely implements a view
of the tax code.

• Even with systems that cannot be precisely
specified, requirements must be spelled out.
– They must be precise enough to bid on contracts,

estimate costs, and to start a design

5-7 CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements

• Requirement: An abstract statement of the
service provided by the system and constraints
on the system.
– Does not imply a predefined solution.
– May be the basis for a contract bid.

• Requirements specification document: a detailed
formal definition of a system problem.
– Commonly written by a contractor to show a clear

understanding of the problem.
– May serve as the basis for a contract.

5-8

CSU CS314 Copyright © James M. Bieman 2000-2016

Functional Requirements

• Essential behavior.
– Services: Users can cut, paste, delete, and

save files.
– Interactions between system and external

world:
Produce paychecks every two weeks.

5-9 CSU CS314 Copyright © James M. Bieman 2000-2016

Non-functional Requirements

Specify operational properties & constraints.
– The system must operate on Linux.
– The code must be written in Java.
– The system must have a specified performance.
– The system must have a specified reliability.
– The system must have a specified availability.

5-10

CSU CS314 Copyright © James M. Bieman 2000-2016

Problem Definition

• Identifies the user's problem.
• Often vaguely written.
• States what is to be done not how it is

to be solved.

5-11 CSU CS314 Copyright © James M. Bieman 2000-2016

Example Problem Statement

“The lawn mower evenly cuts the grass.
Users can set the height of trimmed
grass.'‘

• What is wrong with this as a
specification?

• Could a mechanical engineer design a
lawn mower to meet the above
requirements?

5-12

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-3

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements Specification
• A more formal document, which is

understood by the developer.

“The lawn mower can be set to cut grass
within a range of 1 to 3 inches in height.'‘

• More precise, but still is focused on the
problem not the solution.

• Can serve as a basis for design.

5-13 CSU CS314 Copyright © James M. Bieman 2000-2016

“Fun” Requirements Problems
• Air traffic control system.
• Denver International Airport baggage

system.
• On-line retail store.
• Cell phone support system.
• Class scheduling & classroom

reservation system.
• Election software.

5-14

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements Issues

• Understanding difficult problems often
comes only during development.
Requirements documents are usually incomplete

and inconsistent.
• New SW can change the way an

organization operates, changes software
needs.

• Different users may have widely varying
needs.

Prototyping & Spiral Development can help.
Agile processes may help even more.

5-15 CSU CS314 Copyright © James M. Bieman 2000-2016

“Traditional” Requirements Document
Structure

1. Introduction.
2. Glossary.
3. System models.
4. Functional requirements specification.
5. Non-functional requirements

specification.
6. System evolution.
7. Appendices and Index.

5-16

High Level View of Requirements
Development in an Agile Process

• Develop/revise user stories given feedback from users on
the running version produced in the last development
cycle.

• Convert to use cases, and develop scenarios.
• Select the use cases to implement in the current cycle.
• Develop system tests for the selected use cases.
• Depending on the agile process develop/extend domain

model of the system.

Non requirements activity:
• Implement selected use cases for this cycle:

design, test, code.

Repeat this process.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-17 CSU CS314 Copyright © James M. Bieman 2000-2016

System Models

Model requirements, not the design.
• Relationships between components (classes),

subsystems, system, & external environment.
• Use case scenarios.
• System Sequence Diagrams.
• Domain/Conceptual models.
• Other models.

5-18

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-4

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements Document Purposes

• It is a contract between a client and
developer.

• It is a reference tool for system
development and maintenance.

5-19 CSU CS314 Copyright © James M. Bieman 2000-2016

Developing Requirements

• Use abstraction to separate concerns.
• Express specifications in terms of

problem domain concepts.
Specifications should be tolerant of

incompleteness; some requirements will
be missing.

5-20

CSU CS314 Copyright © James M. Bieman 2000-2016

Specifications Should Be

• Easy to modify.
• Unambiguous.
• Verifiable – Testable.
• Consistent.
• Traceable.
• Usable during operation and maintenance.

5-21 CSU CS314 Copyright © James M. Bieman 2000-2016

Importance of Good
Requirements

• Errors detected later are more
expensive to fix.

• Demarco: 56% of all bugs are due to
requirements errors.

• Errors: incorrect facts, omissions,
inconsistencies, & ambiguities.

5-22

CSU CS314 Copyright © James M. Bieman 2000-2016

Object-Oriented Analysis

1. Obtain customer requirements.
Identify Use Cases and their scenarios.

2. Develop System Sequence Model.
Identify system operations.

3. Model the application domain concepts.
4. Check Domain Model against Use Cases.
5. Revise Domain Model, System Sequence

Diagrams, Use Cases.
Repeat the process.

5-23 CSU CS314 Copyright © James M. Bieman 2000-2016

Use-Case Analysis

• Generalized scenario that describes system
use.

• Ex: Automated retail terminal used as a
store’s computerized cash register.

• Retail terminal uses include:
– Customers buy items: BuyItems Use Case.
– Customers return items: ReturnItems Use Case.

5-24

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-5

CSU CS314 Copyright © James M. Bieman 2000-2016

Use Case Components

• Actors: external entities that
interact with the system.

• Scenarios: describe interactions
between actors and the system.

5-25 CSU CS314 Copyright © James M. Bieman 2000-2016

UML Icons

Buy Items

Use Case Customer

Actor

5-26

CSU CS314 Copyright © James M. Bieman 2000-2016

A Use Case Answers Questions

• What are the main tasks performed by
the actor?

• What system information will the actor
acquire, produce, or change?

• Will the actor have to inform the
system about changes in the external
environment?

5-27 CSU CS314 Copyright © James M. Bieman 2000-2016

More Use Case Questions
• What information does the actor desire

from the system?
• Does the actor wish to be informed

about unexpected changes?
A use case is a narrative that describes

the role of an actor & its interaction
with the system.

5-28

CSU CS314 Copyright © James M. Bieman 2000-2016

UML Use Case Diagram

Buy Items

5-29

Customer

CSU CS314 Copyright © James M. Bieman 2000-2016

Use Case Scenario Analysis

1. Identify Actors.
2. Identify and develop Scenarios.
3. Determine Use Case generalizations of

scenarios.
4. Revise

5-30

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-6

CSU CS314 Copyright © James M. Bieman 2000-2016

Identify Actors

• Identify system boundaries.
• Actors: people or devices that use the

system.
• Actor is a role that a user may play.

One user may play many roles.
• Primary actor: identified early.
• Secondary actor: identified later.

5-31 CSU CS314 Copyright © James M. Bieman 2000-2016

Actors May Include
• Users supported by the system to do their

work.
The store clerks who use the Retail Terminal system.

• Users that execute the main system.
Customers who initiate the sales and returns that

are recorded by the Retail Terminal system.
• Users of secondary functions.

System maintenance or administration.

5-32

CSU CS314 Copyright © James M. Bieman 2000-2016

Use Case Overview

• Focus on system activities that actors
take part in.

• Narrative that describes the role of an
actor and its interaction with the
system.

5-33 CSU CS314 Copyright © James M. Bieman 2000-2016

Retail Terminal Example

Use case name: BuyItems
Actors: Customer (initiator), Cashier.
Overview: A Customer arrives at a checkout

with items to purchase. The Cashier
records the purchase items and collects
payment. On completion the Customer
leaves with the items.

Type: Primary and essential.
Cross Reference (to other parts of the

Requirements Document): Functions:
R1.1,R1.2

5-34

CSU CS314 Copyright © James M. Bieman 2000-2016

BuyItems Use Case (continued)

Typical Flow of Events.
1. Customer arrives at a Retail Terminal checkout.
2. Cashier records identifier from items.
3. System determines item price and adds item

information to running sales transaction. System
presents description and price of current item.

4. Cashier indicates to the Retail Terminal that item
entry is complete.

5. System calculates and presents sale total.
6. Cashier tells Customer the total.

5-35 CSU CS314 Copyright © James M. Bieman 2000-2016

BuyItems Flow of Events (cont)

7. Customer gives payment, either cash, credit
card, or check. If cash, the payment may
exceed sales total.

8. Cashier records payment.
9. System shows either the cash balance due

to Customer, or indicates approval of credit
card or check.

10. Cashier deposits cash, check, or credit slip;
gives change and receipt to Customer.

11. Customer leaves with items purchased.

5-36

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-7

CSU CS314 Copyright © James M. Bieman 2000-2016

Alternative Courses
• Action 2: Invalid identifier entered.

System indicates error.
• Action 7: Customer did not have enough

cash. Cancel sales transaction.
• Action 9: System does not approve

check or credit card. System requests
alternative payment.

5-37 CSU CS314 Copyright © James M. Bieman 2000-2016

Key Point

• A Use Case is not an individual step.
• It is an end-to-end process description,

usually with many steps.

5-38

CSU CS314 Copyright © James M. Bieman 2000-2016

Identifying Use Cases
• Actor-based approach:

1. Identify actors related to a system or
organization.

2. For each actor, identify the process that they
initiate or participate in.

• Event-based approach:
1. Identify external events that a system must

respond to.
2. Relate the event to actors and Use Cases.

5-39 CSU CS314 Copyright © James M. Bieman 2000-2016

Retail Terminal System Actors &
Processes That They Initiate

• Cashier: LogIn, CashOut.
• Customer: BuyItems, ReturnItems.
• Manager: UpdatePrices,

OrderInventory, AddCashier.

5-40

CSU CS314 Copyright © James M. Bieman 2000-2016

Use Case Diagram With Actors
Customer and Cashier

Buy Items

Return Items
Customer

LogIn

Cashier

5-41 CSU CS314 Copyright © James M. Bieman 2000-2016

Use Cases Model Processes
• Withdraw cash from an ATM.
• Order a product.
• Register for courses at a school.
• Drop a course at a school.
• Check spelling of a document in a word

processor.

5-42

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-8

CSU CS314 Copyright © James M. Bieman 2000-2016

Scenarios With Actor Instances

• Instances of a Use Case Scenario.
• Ex: Police Incidence Response System.

– Use Case Scenario: ReportIncident
– Instances:

• WarehouseOnFire.
• FenderBender.
• CatInTree.
• Earthquake.

5-43 CSU CS314 Copyright © James M. Bieman 2000-2016

Specify Functional
Requirements from Use Cases

• Develop system behavior models.
• Convert use cases into System Sequence

Diagrams.
• Serve as high-level system functional

specification.
– Describe system behavior as a black box.
– Specify what a system does, not how it does it.

5-44

CSU CS314 Copyright © James M. Bieman 2000-2016

System Sequence Diagrams

• Includes only the system operations that use
case actors initiate.

• Shows for a specific use case scenario:
– Events that external actors generate.
– Order of the events.

• Generate system sequence diagrams for use
case typical course of events & key
alternative courses.

5-45 CSU CS314 Copyright © James M. Bieman 2000-2016

System Sequence Diagram:
BuyItems Use Case

Cashier

:RetailTerminalSystem

addItem(upc, numItems)Repeat for all
Items.

getTotal()

submitPayment(currency)

Operations addItem,
getTotal, and
submitPayment are
system events, which
trigger system
operations.

5-46

CSU CS314 Copyright © James M. Bieman 2000-2016

Identifying System Operations

• Each system event has a
corresponding operation.

• Buy Items operations:
– addItem(UPC, numItems)
– getTotal()
– submitPayment(currency)

RetailTerminalSystem

addItem()
getTotal()
submitPayment()

System as a black-box
domain concept.

5-47 CSU CS314 Copyright © James M. Bieman 2000-2016

System Events & Operations

• System event: external input event
generated by an actor.
Events initiate a system operation, which

responds to the event.
• System operation: executes in response

to a system event.

5-48

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-9

CSU CS314 Copyright © James M. Bieman 2000-2016

System Sequence Diagram Recipe

Start with a use case scenario (typical course
of events):
1. Draw a vertical line representing the system.
2. Draw a vertical line representing each actor that

directly acts on the system.
3. From the use case scenario, identify each system

event that the actors generates. Put them on the
diagram.

There is a direct connection between the
scenario and the sequence diagram.

5-49 CSU CS314 Copyright © James M. Bieman 2000-2016

Naming System Events &
Operations

• Start event names with a verb.
• Use “level of intent” when naming events.
• Names should be meaningful at an abstract

level.
– getTotal() is better than enterKeyPressed().
– Poor name: enterAmountTendered(amount).
– Better name: submitPayment(amount).

5-50

CSU CS314 Copyright © James M. Bieman 2000-2016

Why Develop System Sequence
Diagrams?

• They model the external interface &
behavior of the overall system.

• Result: identification of system
operations.

5-51 CSU CS314 Copyright © James M. Bieman 2000-2016

Domain Modeling
• Devise a precise, concise, understandable, &

correct model of the application domain.
• Aim: understand the problem.
• Examine & analyze requirements.
• Restate them rigorously.
• Defer dealing with small details.
• Model domain concepts using UML Class

Diagrams:
UML Class boxes represent application domain

concepts.

5-52

CSU CS314 Copyright © James M. Bieman 2000-2016

Domain Modeling Process

1. Identify concept “classes and objects”.
2. Identify key attributes of these concepts.
3. Identify concept responsibilities and

attributes.
4. Determine associations and generalizations

between concepts.

5-53 CSU CS314 Copyright © James M. Bieman 2000-2016

Identifying Domain Concepts

Study problem statement & use cases looking
for:
– Tangible objects or devices: valve.
– Roles: Supervisor.
– People: Worker.
– Places, locations: Home, Office.
– Other systems

• Concept instances (objects) tend to be
pronouns.

5-54

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-10

CSU CS314 Copyright © James M. Bieman 2000-2016

All Nouns May Not Represent
Essential Concepts

Properties of essential concept:
– Retained information: the entity has state.
– Needed services: it will probably have some

operations.
– Multiple problem-domain attributes.
– Attributes are common to all instances of a

concept.
– All instances of a concept will have common

operations.
– The entity is an essential requirement.

5-55 CSU CS314 Copyright © James M. Bieman 2000-2016

Examine Use Cases Carefully

• If 2 use cases refer to the same
concept, the concept in both use cases
should be the same.

• If 2 objects share the same name, but
refer to different concepts, rename
them.

5-56

CSU CS314 Copyright © James M. Bieman 2000-2016

Identify Key Attributes:
Information Held By Objects

NOUN (Concept/Object) ATTRIBUTE
Customer name
Checkout register ID
Cashier badge number
Identifier
Items price, description
Sales Transaction item, prices, payment, balance
Payment amount
Balance amount

5-57 CSU CS314 Copyright © James M. Bieman 2000-2016

Concept (Class) Responsibilities

• Ultimately represented by methods.
• May defer method definition to design.
• Verbs in the problem statement & Use

Cases are potential class responsibilities
& methods.

5-58

CSU CS314 Copyright © James M. Bieman 2000-2016

Concept (Class) Responsibility
Hints

• System intelligence should be evenly
distributed.

• Responsibilities should be stated as
generally as possible.

• Information & related behavior should
reside in the same class.

5-59 CSU CS314 Copyright © James M. Bieman 2000-2016

Concept (Class) Responsibility
Hints (2)

• Information about 1 thing should reside
in a single concept, not distributed
across multiple concepts.

• Share responsibilities among related
concepts.

5-60

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-11

CSU CS314 Copyright © James M. Bieman 2000-2016

Deriving Associations
• Look for collaborators.
• Association: represents a contract

between client & server concepts.
• Relationship types:

– Is-part-of (composition).
– Has-knowledge-of.
– Depends upon, or uses.

• Delay defining generalization-
specialization relationships.

5-61 CSU CS314 Copyright © James M. Bieman 2000-2016

Ex: Pizza Ordering System

System Capabilities:
– It should be accessed via the www. It should allow

a customer to order pizza to be delivered to the
customer's location.

– Customers can specify the pizza size, toppings,
delivery address, and method of payment.

– Customer orders will be recorded and placed where
the restaurant staff can find and process the
order.

5-62

CSU CS314 Copyright © James M. Bieman 2000-2016

Primary Use Case
Use case name: OrderPizza
Actors: Customer (initiator),

KitchenStaff, Driver.
Overview: A Customer uses a browser to
order a pizza for delivery.

Type: Primary and essential.

5-63 CSU CS314 Copyright © James M. Bieman 2000-2016

Typical Flow of Events

1. Customer finds Pizza Web Page using a
browser.

2. Customer selects PizzaOrder.
3. System brings up an order form.
4. Customer selects pizza size and toppings.

Gives address, phone, and payment method.

5-64

CSU CS314 Copyright © James M. Bieman 2000-2016

Typical Flow of Events

5. System records customer's information,
calculates the price, and then presents
confirmation window.

6. Customer confirms the order.
7. System sends order to the kitchen and

delivery staff.
8. Kitchen staff makes pizza.
9. Driver delivers it to the Customer.

5-65 CSU CS314 Copyright © James M. Bieman 2000-2016

Alternative Courses

• Action 5: System finds an error in the
order and brings up an error window.

• Action 6: Customer does not confirm.
The System gives the customer a
choice: correct error or quit.

5-66

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-12

CSU CS314 Copyright © James M. Bieman 2000-2016

Examine Nouns In Problem
Statement

• Customer
• Order
• Kitchen Staff
• Driver
• Pizza Web Page

• Order Form
• Pizza
• Toppings
• Confirmation

Window
• Error Window

5-67 CSU CS314 Copyright © James M. Bieman 2000-2016

Concepts In My Model

• I omit the driver & kitchen staff.
• Use OrderForm as the entry into the system

(I won’t include the main web page).
• Included are Customer, Order, Order Form,

Pizza, Toppings, ConfirmationWindow, and
ErrorWindow.

• Additional classes can be added later.

5-68

CSU CS314 Copyright © James M. Bieman 2000-2016

Pizza System Domain Model

5-69 CSU CS314 Copyright © James M. Bieman 2000-2016

Potential Additions
• Attributes:

– Customer: name, address, phone number,
lastOrder.

– Order: timePlaced, cost, paymentType.
• Methods:

• Order concept would have certain methods:
calculateCost(), recordOrder(),

validateOrder()
• Some experts recommend against including

methods.

5-70

CSU CS314 Copyright © James M. Bieman 2000-2016

Determining Relationships
Between Concepts

1. Identify concept responsibilities.
2. Identify collaborator concepts that help a

concept meet defined responsibilities.
This establishes a connection between concpets.
Collaborators are always related in some way.

3. Specify nature of the relationship.
– Direction.
– Arity: one-to-one, one-to-two, one-to-many.
– Classify: aggregation, inheritance, association.

5-71 CSU CS314 Copyright © James M. Bieman 2000-2016

Airline Domain/Conceptual Model

Airline

Person Flight Plane

1
Employs

1..*
Assigned-to

Assigned-to
* * * 1

*1

Supervises

5-72

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-13

CSU CS314 Copyright © James M. Bieman 2000-2016

Multiple Associations

Flight Airport
* Flies-to 0..1

Flies-from
* 1

5-73 CSU CS314 Copyright © James M. Bieman 2000-2016

Roles: Indicated by Role Name

Company Person* employee

employer 1..*

Person
parent

child-of

child *

2

5-74

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements Evaluation

A good requirements document should be:
– Unambiguous.
– Verifiable.
– Consistent.
– Complete.
– Should not dictate a particular design.

5-75 CSU CS314 Copyright © James M. Bieman 2000-2016

Unambiguous Requirement
Specification Document

• Each statement has one interpretation.
• Use a glossary.
• Ambiguous terms: “user”, “user account”,
“transaction”.

• Use terms from application domain.
• Avoid vague terms: “some”, “sometimes”,
“often”, “usually”, “ordinarily”.

5-76

CSU CS314 Copyright © James M. Bieman 2000-2016

Avoid Ambiguous Pronouns

“Module A talks to Module B and its
control flag is set.”

Which module does “its” refer to?

5-77 CSU CS314 Copyright © James M. Bieman 2000-2016

Verifiable Requirement

• Can be tested.
Must be finite, cost-effective ways to check

a program to see if it meets its
requirements.

• Non-verifiable statements:
– “should be reliable”,
– have a “friendly user-interface”,
– or “responses are usually within 10

seconds''

5-78

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-14

CSU CS314 Copyright © James M. Bieman 2000-2016

Consistent Requirements
• No two statements contradict.
• Avoid using different terms for the same

concept.
• Conflicting real world properties:

“stop at red only … stop at green only”
• Logical or temporal statements may conflict:

“A follows B … A acts simultaneously with B”

5-79 CSU CS314 Copyright © James M. Bieman 2000-2016

Complete Requirements

Adequately describes all significant
requirements.

• Define all responses for all inputs in all
situations.

• Label all requirements, tables, figures, &
diagrams.

• Reference these labels.

5-80

CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements Should Not Imply a
Design

• Entities,models, and descriptions should be in
the language of the clients problem domain.

• Avoid:
– Data structures: “arrays, stacks, queues, trees …”
– “Procedure, threads, tasks, remote procedure calls,

synchronization” are design entities.
– “pixels” (unless it’s part of the problem domain”).
– Algorithm details.
– Design patterns.

5-81 CSU CS314 Copyright © James M. Bieman 2000-2016

Evaluating Use Cases
• Should cover all types of end-to-end

scenarios.
• A use case is not an individual operation.

– UpdateInventory is probably not a use case in a
video store system. It’s an operation that is part
of use cases such as RentVideo, ReturnVideo, etc.

– Operations such as update account balance,
calculate late fees, give cash for purchases, and
use a coupon.

These are not use cases. Rather they are part of use
cases.

5-82

CSU CS314 Copyright © James M. Bieman 2000-2016

Evaluating Domain/Conceptual Models

• The information needed by a concept
should be modeled either as an
attribute or an association (possibly
composition).

• Make sure that you specify the
multiplicity when an association may be
to more than one conceptual object.

5-83 CSU CS314 Copyright © James M. Bieman 2000-2016

Evaluating Domain Models
• A verb should not be the primary word used

to describe a concept.
``tracks the instances of items'' does not sound

like the description of a concept.
The action is likely to be a service provided by a

concept.
• Make sure that you have associations to

indicate a mechanism for a conceptual object
to obtain the necessary information from
other concepts in order to fulfill its
responsibilities.

5-84

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-15

CSU CS314 Copyright © James M. Bieman 2000-2016

Functional vs. Non-functional
Requirements

• Functional requirements describe what
we want the system to do.

For the video store, “record video rentals
and returns” is a functional requirement.

• Non-functional requirement defines
required or necessary constraints.

5-85 CSU CS314 Copyright © James M. Bieman 2000-2016

Non-Functional Requirements

• Response time.
• Implementation

language.
• OS platform.
• Portability.
• Ease of use.

• Reliability.
• Maintainability.
• Testability.
• Robustness.
• Availability.
• Safety.

5-86

CSU CS314 Copyright © James M. Bieman 2000-2016

Non-Functional Requirements

• Must be specified in a testable manner.
Quantify them:

• Give numerical values for response times.
• Be specific about portability requirements.

5-87 CSU CS314 Copyright © James M. Bieman 2000-2016

Requirements: Functional & Non-
functional.

• Functional requirements tell what we
want a system to do.

• Non-functional requirements often
state what we don’t want the system to
do.
Safety requirements state that the system

should “do no harm”.
A good safety requirement must be testable.

5-88

CSU CS314 Copyright © James M. Bieman 2000-2016

Summary
• Requirements describe what a system is

to do, not how to do it.
• Requirements documents must be
“rigorous” descriptions of the problem.

• We model the problem space via use-case
analysis, system sequence diagrams, and
domain/conceptual models.

• Requirements must exhibit a set of
desirable properties.

5-89

Requirements Notes Addendum

• More on Domain Modeling.
• Nonfunctional requirements.
• The trouble with natural language

specifications.
• How specifications live forever.

First, a word from Dilbert.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-90

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-16

5-91CSU CS314 Copyright © James M. Bieman 2000-2016

Domain Modeling with UML Class
Diagrams CRC cards

What is a Domain Model?
Illustrates meaningful conceptual
classes in the problem domain.
Represents real-world concepts,
not software components.
Software-oriented class diagrams are
developed later, during design.

Source: Prof. Glenn Blank, Lehigh Univ.

5-92CSU CS314 Copyright © James M. Bieman 2000-2016

A Domain Model is Conceptual,
not a Software Artifact

Sale

amt

item

SalesDatabase

Sale

Double amt;

Item item;

void print()

Conceptual Class: Software Artifacts:

vs.

What’s the
difference?

5-93CSU CS314 Copyright © James M. Bieman 2000-2016

Domain Model Relationships

Domain Model

Use Case Model

Interaction Diagrams
(sequence diagrams)

Glossary

Dynamic Behavior

Functional Requirements

Conceptual Class Diagram
Classes, attributes, associations

Domain
objects

Define terms

What do you learn about when and how to create these models?
5-94CSU CS314 Copyright © James M. Bieman 2000-2016

Identify conceptual classes
from noun phrases

Analyze Problem Statement, Use Cases and Use
Case Scenarios, and Glossary.

However:
• Words may be ambiguous or synonymous.
• Noun phrases may also be attributes or

parameters rather than classes:
– If it stores state information or it has multiple

behaviors, then it’s a class.
– If it’s just a number or a string, then it’s probably

an attribute.

5-95CSU CS314 Copyright © James M. Bieman 2000-2016

From Noun Phrases (NPs) to classes or
attributes

The ATM verifies whether the customer's card number and PIN are correct.
S V O O O

If it is, then the customer can check the account balance, deposit cash, and withdraw cash.
S V O V O V O

Checking the balance simply displays the account balance.
S O V O

Depositing asks the customer to enter the amount, then updates the account balance.
S V O V O V O

Withdraw cash asks a customer for an amount to withdraw; if the account has enough cash,
S O V O O V S V

O
the account balance is updated. The ATM prints the customer’s account balance on a
receipt.

O V S V O O
Analyze each subject and object as follows:
• Does it represent a person performing an action? It’s an actor, ‘R’.
• Is it also a verb (such as ‘deposit’) It may be a method, ‘M’.
• Is it a simple value, such as ‘color’ (string) or ‘money’ (number)?

It is probably an attribute, ‘A’.
• Which NPs are unmarked? Make it ‘C’ for class.
Verbs can also be classes, for example:
• Deposit is a class if it retains state information

R

R

M

M

A A

A

A

A A

A

A A

A A

A A

A

C

C

R

M

R

Consider the following problem description, analyzed for Subjects, Verbs, Objects:

C

5-96CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-17

Steps to create a Domain Model

• Identify candidate conceptual classes
• Draw them in a UML domain model
• Add associations necessary to record

the relationships that must be retained
• Add attributes necessary for

information to be preserved
• Use existing names for things, the

vocabulary of the domain

5-97CSU CS314 Copyright © James M. Bieman 2000-2016 5-98

Monopoly Game domain model
(first identify concepts as classes)

Monopoly Game

Player Piece

Die Board

Square

CSU CS314 Copyright © James M. Bieman 2000-2016

Monopoly Game domain model
Larman reference text, Figure 9.28

5-99CSU CS314 Copyright © James M. Bieman 2000-2016

Discovering the Domain Model with CRC cards

• Developed by Beck and Cunningham at Tektronix
– See http://c2.com/doc/oopsla89/paper.html
– This is the same Kent Beck that later wrote the book

pioneering Extreme Programming (XP)
• CRC cards are now part of XP

5-100CSU CS314 Copyright © James M. Bieman 2000-2016

Low-tech
• Ordinary index cards

– Each card represents a class of objects.
– 3x5 is preferable to 4x6 at least early on –

Why?
• Each card has three components

– Name, Responsibilities, Collaborators

5-101CSU CS314 Copyright © James M. Bieman 2000-2016

Responsibilities
• Key idea: objects have responsibilities.

As if they were simple agents (or actors in scenarios).
• Anthropomorphism of class responsibilities avoids

thinking of classes as just data holders.
“Object think” focuses on their active behaviors.

• Each object is responsible for specific actions.
Client can expect predictable behaviors.

• Responsibility also implies independence:
– Trust an object to behave as expected and rely upon its

autonomy and modularity.
– It’s hard to trust objects caught up in dependencies

due to global variables and side effects.

5-102CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-18

Class Names
• Class Name creates the vocabulary of our analysis.

– Use nouns as class names; think of them as simple agents.
– Verbs can be made into nouns, if they are maintain state.

“reads card” suggests CardReader.
• Use pronounceable names:

If you cannot read the name out loud, it is not a good name.
• Capitalization the first letter in Class names and use

CamelBack for multi-word names:
CardReader rather than CARDREADER or card_reader

• Avoid obscure, ambiguous abbreviations:
Is “TermProcess” something that terminates
or something that runs on a terminal?

• Avoid using digits within a name (e.g., CardReader2).
Its better for instances than classes.

5-103CSU CS314 Copyright © James M. Bieman 2000-2016

Responsibilities section

• Describes a class’s behaviors.
Describe what is to be done, not how.

• Use short verb phrases:
“reads card” or “look up words”.

• The small size of index cards guides class
analysis.
– Limits the complexity of card entries.
– If you cannot fit enough tasks on a card,

maybe you need to divide tasks between classes,
on different cards.

5-104CSU CS314 Copyright © James M. Bieman 2000-2016

Collaborators
• Lists important suppliers and possibly clients of a class.
• Classes that supply services are important here.

Suppliers are needed to describe responsibilities.
• As you write down responsibilities for a class, add any

suppliers needed.
For example “read dictionary” obviously implies a “dictionary”

as a collaborator.
• Developing CRC cards is a process of discovering classes

and their responsibilities.
– People naturally perceive the world as categories of objects.
– During OO analysis, you discover new categories relevant to

a problem domain.

5-105CSU CS314 Copyright © James M. Bieman 2000-2016 5-106

Non-functional Requirements
Define system properties and constraints:

– Properties: reliability, response time and storage
requirements.

– Constraints: I/O device capability, system
representations, etc.

• Process requirements may mandate a particular
program development environment, programming
language or development method.

• Non-functional requirements may be more
critical than functional requirements. If these
are not met, the system is useless, or worse.

Source: UCSD.

CSU CS314 Copyright © James M. Bieman 2000-2016

5-107

Non-functional Classifications
• Product requirements: the delivered product must

behave in a particular way.
Execution speed, reliability, etc.

• Organisational requirements: a consequence of
organisational policies and procedures.
Process standards, implementation requirements, etc.

• External requirements: factors that are external to
the system and its development process.
Interoperability requirements, legislative requirements, etc.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-108

Non-functional requirement types

CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-19

5-109

Non-functional requirements examples
• Product requirement

4.C.8 It shall be possible for all necessary communication
between the APSE and the user to be expressed in the
standard Ada character set.

• Organisational requirement
9.3.2 The system development process and deliverable

documents shall conform to the process and deliverables
defined in XYZCo-SP-STAN-95

• External requirement
7.6.5 The system shall not disclose any personal

information about customers apart from their name and
reference number to the operators of the system

CSU CS314 Copyright © James M. Bieman 2000-2016 5-110

Goals and requirements
• Non-functional requirements can be very

difficult to state precisely, but imprecise
requirements may be difficult to verify.

• Goal: A general intention of the user.
Ex: ease of use

• Verifiable non-functional requirement
A statement using some measure that can be

objectively tested
• Goals are helpful to developers as they

convey the intentions of the system users

CSU CS314 Copyright © James M. Bieman 2000-2016

5-111

Examples

• A system goal:
The system should be easy to use by experienced

controllers and should be organised in such a
way that user errors are minimised.

• A verifiable non-functional requirement:
Experienced controllers shall be able to use all

the system functions after a total of two hours
training. After this training, the average
number of errors made by experienced users
shall not exceed two per day.

CSU CS314 Copyright © James M. Bieman 2000-2016

Non-functional Requirements
Measures

• Speed:
– Processed transactions per second.
– User event response time.
– Screen refresh time.

• Size: Kbytes, number of RAM chips
• Ease of use: training time, number of help frames.
• Reliability: mean time to failure, rate of failure occurrence.
• Availability: proportion of time that the system is available.
• Robustness:

– Time to restart after failure.
– Percentage of events causing failure.
– Probability of data corruption on failure.

• Portability:
– Percentage of statements that are platform dependent.
– Number of target platforms.

5-112CSU CS314 Copyright © James M. Bieman 2000-2016

5-113

Requirements Interaction
• Conflicts between different non-functional

requirements are common in complex systems.
• Spacecraft system:

– To minimise weight, the number of separate chips in the
system should be minimised.

– To minimise power consumption,
lower power chips should be used.

– However, using low power chips
may mean that more chips have
to be used.

Which is the most critical requirement?

CSU CS314 Copyright © James M. Bieman 2000-2016 5-114

Domain requirements

• Based on the application domain: system
characteristics and features that
reflect the domain.
May include new functional requirements,

constraints on existing requirements or
define specific computations

• If domain requirements are not
satisfied, the system may be unusable.

CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-20

5-115

Domain requirements problems
• Understandability:

– Expressed in the language of the
application domain.

– Often not understood by the software
developers.

• Implicitness:
– Domain specialists understand the area

so well that they do not think of making
the domain requirements explicit.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-116

User requirements

• Should describe functional and non-
functional requirements so that they are
understandable by system users who
don’t have detailed technical knowledge.

• User requirements are defined using
natural language, tables and diagrams.

CSU CS314 Copyright © James M. Bieman 2000-2016

5-117

Problems with natural language
• Lack of clarity.

Precision is difficult without making
the document difficult to read.

• Requirements confusion.
Functional and non-functional

requirements tend to be mixed-up.
• Requirements amalgamation

Several different requirements may be
expressed together.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-118

Guidelines for writing
requirements

• Invent a standard format and use it for all
requirements.

• Use language in a consistent way. Use

shall for mandatory requirements,

should for desirable requirements.
• Use text highlighting to identify key parts of

the requirement.

Avoid the use of computer jargon !!!
CSU CS314 Copyright © James M. Bieman 2000-2016

5-119

Requirements and design
• In principle, requirements should state

what the system should do and the design
should describe how it does this.

• In practice, requirements and design are
inseparable.
– A system architecture may be designed to

structure the requirements.
– The system may inter-operate with other

systems that generate design requirements.
– The use of a specific design may be a domain

requirement.

CSU CS314 Copyright © James M. Bieman 2000-2016 5-120

Problems with Natural Language (NL)
specification

• Ambiguity.
The readers and writers of the requirement

must interpret the same words in the same
way. NL is naturally ambiguous so this is
very difficult

• Over-flexibility.
The same thing may be said in a number of

different ways in the specification
• Lack of modularization.

NL structures are inadequate to structure
system requirements.

CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-21

The Trouble with Natural Language
Specifications

A case-study on a text-processing problem.

Naur's Specification: Given a text consisting of
words separated by BLANKS or by NL (new
line) characters, convert it to a line-by-line
form in accordance with the following rules:
1. line breaks must be made only where the given

text has BLANK or NL;
2. each line is filled as far as possible, as long as
3. no line will contain more than MAXPOS

characters.

5-121CSU CS314 Copyright © James M. Bieman 2000-2016

Specifying a Text-processing Problem.

Goodenough and Gerhart’s Specification:
The program's input is a stream of
characters whose end is signaled with a
special end-of-text character, ET. There
is exactly one ET character in each input
stream. Characters are classified as:
– break characters - BL (blank) and NL (new

line);
– nonbreak characters - all others except ET;
– the end-of-text indicator - ET.

5-122CSU CS314 Copyright © James M. Bieman 2000-2016

Goodenough and Gerhart’s
Specification (cont)

A word is a nonempty sequence of nonbreak characters. A break is a
sequence of one or more break characters. Thus, the input can be
viewed as a sequence of words separated by breaks, with possibly
leading and trailing blanks, and ending with ET.

The program's output should be the same sequence of words as in the
input, with the exception that an oversize word (i.e. a word containing
more than MAXPOS characters, where MAXPOS is a positive integer)
should cause an error exit from the program (i.e. a variable, Alarm,
should have the value TRUE). Up to the point of error, the program's
output should have the following properties:
1. A new line should start only between words and at the beginning of the output

text, if any.
2. A break in the input is reduced to a single break character in the output.
3. As many words as possible should be placed on each line (i.e. between

successive NL characters).
4. No line may contain more than MAXPOS characters (words and BLs).

5-123CSU CS314 Copyright © James M. Bieman 2000-2016

Mili’s Specification
Given are a non-negative integer MAXPOS and a character set which

includes two break characters, blank and newline. For a sequence of
character(s) s, we define a word as a non-empty sequence of
consecutive non-break characters embedded between break characters
or the endpoints of s (i.e. the beginning and end of sequence s).

The program shall accept as input a finite sequence of characters and
produce as output a sequence of characters satisfying the following
conditions:
1. If the input sequence contains MAXPOS+1 consecutive non-break characters

then the output sequence consists of a blank.
2. If the input includes at least one break for any consecutive MAXPOS+1

characters, then
1. All the words of the input appear in the output, in the same order; all the words of the

output appear in the input.
2. Furthermore, the output must meet the following conditions:

1. It contains no leading or trailing breaks, nor does it have two consecutive breaks.
2. Any sequence of MAXPOS+1 consecutive characters includes a newline.
3. Any subsequence of the output made up of no more than MAXPOS consecutive characters and

embedded between the head of the output or a newline on the left and the tail of the output or
a break on the right does not contain a newline character.

5-124CSU CS314 Copyright © James M. Bieman 2000-2016

How Specs Live Forever
The Question:

The US Standard railroad gauge (distance between
the rails) is 4 feet, 8.5 inches.

That's an exceedingly odd number. Why was that
gauge used?

– Because that's the way they built them in England, and the US
railroads were built by English expatriates.

Why did the English people build them like that?
– Because the first rail lines were built by the same people who built

the pre-railroad tramways, and that's the gauge they used.
Why did "they" use that gauge then?

– Because the people who built the tramways used the same jigs and
tools that they used for building wagons, which used that wheel
spacing.

5-125CSU CS314 Copyright © James M. Bieman 2000-2016

Why did the wagons use that odd
wheel spacing?

• Well, if they tried to use any other spacing the
wagons would break on some of the old, long distance
roads, because that's the spacing of the old wheel
ruts

So who built these old rutted roads?

• The first long distance roads in Europe were built by
Imperial Rome for the benefit of their legions. The
roads have been used ever since. And the ruts? The
initial ruts, which everyone else had to match for
fear of destroying their wagons, were first made by
Roman war chariots. Since the chariots were made
for or by Imperial Rome they were all alike in the
matter of wheel spacing.

5-126CSU CS314 Copyright © James M. Bieman 2000-2016

CS314 Notes-5 James M. Bieman 2016
James M. Bieman

5-22

How Specs Live Forever
The Answer:

Thus, we have the answer to the original questions. The
United States' standard railroad gauge of 4 feet, 8.5
inches derives from the original specification for an
Imperial Roman army war chariot.

Specs and Bureaucracies live forever.
So, the next time you are handed a specification and

wonder what horse's ass came up with it, you may be
exactly right. Because the Imperial Roman chariots
were made to be just wide enough to accommodate the
back-ends of two war horses.

Numerous sources: Search on “How specs live
forever”.

5-127CSU CS314 Copyright © James M. Bieman 2000-2016

