
Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-1

6-1CSU CS 314 Copyright © James M. Bieman 2000-2016

Chapter 6: Software
Safety

James M. Bieman
CS314, Colorado State Univ.

2016

1 CSU CS 314 Copyright © James M. Bieman 2000-2016

Software Safety

• A non-functional requirement.
• Safety requirements specify what the

software is not supposed to do --- software
should not cause physical harm.

• Harm may be due to software control of
physical devices:
Therac-25, fly-by-wire-airplane, nuclear reactor,

chemical plants, prison locks, phone switch causing
911 failure, etc.

6-2

CSU CS 314 Copyright © James M. Bieman 2000-2016

Software Safety Sources

• Nancy Leveson, Safeware, Addison-Wesley, 1995.
• John McCormick, Eight fatal software-related accidents, 2004.
• E. Wong, V. Debroy, A. Surampudi, H.J. Kim, M. Siok. Recent

catastrophic accidents: investigating how software was
responsible, Proc. IEEE Int. Conf. Secure Software Integration
and Reliability Improvement, 2010, pp. 14-22.

• R. Lutz. Analyzing software requirements errors in safety-
critical, embedded systems, Proc. IEEE Int. Symp. on
Requirements Engineering, 1993, pp. 126-133.

• The Risks Digest: Forum on risks to the public in computers and
related systems.
http://catless.ncl.ac.uk/Risks/

• Various other web sites.

6-3

Fatal Software Accidents
[McCormick 2004, Wong et al. 2010, and others]

• 2010: Braking software “glitch” in Toyota Prius,
Lexus, and other models may have caused crashes.
? deaths

• 2010: Ambulance software shuts off onboard
oxygen.
1 death

• 2007: Software “glitch” in antiaircraft cannon
causes it to malfunction during a shooting exercise
in South Africa.
9 deaths

• 2002: Software failures help cause power outage in
NW U.S. and Canada.
8 deaths

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-4

Fatal Software Accidents
[McCormick 2004, Wong et al. 2010]

• 2001: Cancer patients in Panama die due to radiation
overdoses computed via faulty use of software.
18 known deaths

• 2000: Crash of USMC Osprey tilt-rotor aircraft blamed
on “software anomaly”.
4 deaths

• 1999: Industrial control system releases 237,000 gallons
of gasoline into local creeks near Bellingham, Washington.
The river ignites.
3 deaths

• 1997: Software problem hobbles radar that could have
prevented Korean Air Flight 801 crash.
225 deaths

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-5

Fatal Software Accidents
[McCormick 2004, Wong et al. 2010]

• 1997: Software logic error causes infusion pump to deliver
lethal dose of morphine.
1 death

• 1995: American Airline jet crashes into a mountain in
Columbia. Software provided “insufficient and conflicting
information to the pilots”.
159 deaths

• 1991: Software problem prevents Patriot missile battery
from picking up incoming SCUD missile in Saudi Arabia. It
hits a U.S. Army barracks.
28 deaths

• 1985: Software design flaws in the Therac-25 leads to
radiation overdoses in U.S. and Canadian patients.
3 known deaths

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-6

Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-2

CSU CS 314 Copyright © James M. Bieman 2000-2016

Safety Risks in Software
• Generally in software that controls physical entity that can

cause harm.
• Embedded systems
• Medical applications.

– Software controlled treatment.
• Therac-25
• Surgical equipment: robots, scalpels, …
• Pacemakers.
• Diabetes insulin pumps.
• Patient monitoring.

– Diagnoses support:
• Automatic x-ray interpretation.
• Expert systems

– Patient records
Need for continuous availability.

To lower risks, knowledge of the entire application domain is
critical.

6-7 CSU CS 314 Copyright © James M. Bieman 2000-2016

Safety Myths
1. The cost of computers is lower than that of

analog or mechanical devices.
Software can be more expensive than hardware, especially

when we include maintenances costs. The on-board
Space Shuttle software is about 300K words and has
an annual budget of $100M for software maintenance.

2. Software is easy to change.
3. Software provides greater reliability than

hardware.
Software does not wear out, but design errors are common.

6-8

CSU CS 314 Copyright © James M. Bieman 2000-2016

Safety Myths (cont)
4. Increasing software reliability increases safety.

Only a partial overlap between reliability and safety
5. Testing or proving correctness can remove all

errors.
6. Reuse increases safety.

Reuse outside of the original domain can lead to trouble.
The Therac-20 software was used in the Therac-25.
Aviation software can have problems in the Southern
hemisphere.

7. Software reduces risk over mechanical systems
due to better control.

Safety margins may be cut, resulting in no safety gain.

6-9 CSU CS 314 Copyright © James M. Bieman 2000-2016

Do Human Operators Cause Most
Accidents?

• Were the operators responsible for the Tyler
Therac-25 accidents?

• Human operators are often blamed for
accidents.
– “85% of unsafe work accidents are caused by

unsafe acts by humans rather than unsafe
conditions".

– Such data may be biased and incomplete and often
is based on reports of supervisors.

– It can be convenient to blame the operators rather
than the system design.

6-10

CSU CS 314 Copyright © James M. Bieman 2000-2016

Example: 1979 DC-10 Crash

• In 1979, a DC-10 crashed into Mt. Erebus in
Antarctica.

• The inquiry blamed the pilot. However,
– the autopilot had been altered by other employees

just before flight, and the pilot was not notified.
– The pilot was blamed for flying too low. However,

he flew low due to specific management
instructions to fly low to improve sightseeing.

6-11 CSU CS 314 Copyright © James M. Bieman 2000-2016

Example: False Nuclear Attack
• A false warning of a Soviet nuclear attack in

1979 was blamed on a "simple operator error".
An operator mistakenly inserted a training tape that

simulated an attack into the warning system in
Cheyenne Mountain.

• However, at the time,
– NORAD was deploying an upgraded system.
– During deployment, some of the software

development and testing was done on the on-line
NORAD network, because no other computer
system was available.

6-12

Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-3

CSU CS 314 Copyright © James M. Bieman 2000-2016

Example: Three Mile Island
• Operators were blamed for throttling back on 2

high-pressure injection pumps to decrease water
pressure, thus allowing the core to become
uncovered and overheat.

• However, unless the operator knows that there
was a loss of coolant,
– the standard practice was to throttle back to avoid other

kinds of damage.
– An indicator that would suggest a lack of coolant was on

the back side of the control panel.
– Also, operators were used to seeing faulty readings.

6-13 CSU CS 314 Copyright © James M. Bieman 2000-2016

Consider the Situation at TMI

• 110 alarms were sounding;
• Key indicators were inaccessible and/or

malfunctioning;
• Repair order tags covered warning lights;
• The data printout was running one or more

hours behind;
• The room was filling with experts; and so on.
Blaming the operators seems like a way out.

6-14

CSU CS 314 Copyright © James M. Bieman 2000-2016

Reported Poor User-interface
Designs in Nuclear Power Plants:

• Dials measuring the same quantities are
calibrated using different scales.

• Normal ranges are not uniformly marked.
• Recorders are cluttered with excess

information.
• Labels and colors are inconsistent and/or

confusing.
• Left-hand displays are driven by right-hand

controls.
• Meters cannot be read from a distance, but

controls are far away.

6-15 CSU CS 314 Copyright © James M. Bieman 2000-2016

Reported poor user-interface designs
in nuclear power plants 2:

• Key displays are on the back of the console,
while unimportant displays are on the front.

• Two identical (unmarked) scales are side-by-
side. One differs from the other by a factor
of 10.

• Labels on alarms differ from corresponding
labels in the written procedures.

• Training control board is laid out differently
from the actual control board.

6-16

CSU CS 314 Copyright © James M. Bieman 2000-2016

Examples of Poor Designs Seen
in Real Control Rooms

6-17 CSU CS 314 Copyright © James M. Bieman 2000-2016

Labeling on Pumps [Leveson 1995]

1 2 43 7 5 6

6-18

Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-4

CSU CS 314 Copyright © James M. Bieman 2000-2016

Reversal of Trip-Reset Positions
[Leveson 1995]

Reset Trip

MFPT
TRIP-RESET

6-19 CSU CS 314 Copyright © James M. Bieman 2000-2016

Another Inconsistency
[Leveson 1995]

Close Open

Open Close

6-20

CSU CS 314 Copyright © James M. Bieman 2000-2016

Heater Pressure Gauges [Leveson 95]

1400 1200

1000

600

900

600

A hurried operator
might believe that the
outlet pressure is
higher than the supply

FW HTR
SUPPLY HDR

FW HTR
OUTLET HDR

6-21 CSU CS 314 Copyright © James M. Bieman 2000-2016

A Strange Way To Count
[Leveson 95]

1200

900

600

1200

900

600

1200

900

600

1200

900

600

3 2 1 4

TURB AUX FWP
LVL CONTROL

6-22

CSU CS 314 Copyright © James M. Bieman 2000-2016

Root Causes of Software
Accidents

• General attitude: overconfidence &
complacency, safety given low priority.

• Ineffective organizational structure:
nobody with authority is really in charge
of safety.

• Ineffective technical activities:
paperwork rather than real solutions.
No attention to real risks.

6-23 CSU CS 314 Copyright © James M. Bieman 2000-2016

Safety Definitions
• Safety: freedom from accidents or losses.
• Accident: undesirable and unplanned event

that results in a specified loss.
• Incident (also know as a near miss): an event

that involves no loss, but with the potential
for loss under different circumstances.

• Hazard: a state or a set of conditions of a
system or object that, together with other
environmental conditions, will lead to an
accident.

6-24

Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-5

CSU CS 314 Copyright © James M. Bieman 2000-2016

Risk

• Hazard level:
– Hazard severity
– Likelihood of a hazard leading to an

incident.
• Exposure.
• Likelihood of a hazard leading to an

accident.

6-25 CSU CS 314 Copyright © James M. Bieman 2000-2016

First Step for Safety:
Identify Hazards

• We can only protect against known hazards.
• Look for known, obvious hazards. Look at

system boundaries.
• Government mandated hazards.
• Past history of accidents and incidents.
• Energy flows, dangerous materials.
• Environment and its changes.
• Develop scenarios.

6-26

CSU CS 314 Copyright © James M. Bieman 2000-2016

Classify Hazards

• Damage potential. Use an ordinal scale:
Catastrophic, critical, marginal, negligible.

• Likelihood. An ordinal scale:
Frequent, probable, occasional, remote,

improbable.

6-27 CSU CS 314 Copyright © James M. Bieman 2000-2016

Designing for Safety

• Hazard elimination.
• Hazard reduction: reduce exposure to

hazards.
• Hazard control: prevent a hazard

occurrence from leading to an accident.
• Damage minimization: minimize the

damage caused by an accident.

6-28

CSU CS 314 Copyright © James M. Bieman 2000-2016

Simplify Complex Designs

• Eliminate interrupts.
• Limit non-determinism caused by

multitasking, threads, and parallelism.
• Make designs testable & code readable.
• Encapsulate safety critical components.
• Avoid pointers, gotos, implicit type

conversions, global variables.

6-29 CSU CS 314 Copyright © James M. Bieman 2000-2016

Safety Evaluation:
Software Fault Tree Analysis

• Start with a known hazard: identify
states that can lead to an incident
state.

• Trace backwards through the program
using rules of inference and program
semantics.

• Determine if a program path can lead to
a dangerous state.

6-30

Software Development Methods

Chapter 6

Software Safety

Fall 2016

James M. Bieman

Colorado State University 6-6

Software Safety: The Voyager &
Galileo Spacecraft

Spacecraft have embedded software on their
flight computers:
– Voyager (1977- ?): 18,000 LOC.
– Galileo (1989-2003): 22,000 LOC.
Lots of message passing, real-time monitoring, with

complex timing.

CSU CS 314 Copyright © James M. Bieman 2000-2016

Voyager Galileo

6-31

Software Safety: The Voyager &
Galileo Spacecraft

• Robyn Lutz [1993] studied 387 software
errors found during testing.

• Cause and potential effect was
documented.

• Out of all software errors, 87 on
Voyager and 122 on Galileo are “safety
critical”.
Faults with “potential significant or

catastrophic effects”.

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-32

Recommendations to Limit Safety-
related Software Faults

1. Focus on the interfaces,. Interfaces are where
safety-related faults (especially timing faults)
tend to be.

2. Identify safety-critical hazards early.
3. Use formal specifications to supplement natural

language specs.
4. Improve communication within and between teams.
5. Communicate changing requirements to

development and test teams.
6. Require defensive design with run-time safety

checks, and backward analysis from critical
failures.

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-33

View from Voyager

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-34

View from
Galileo of
Jupiter’s
Great Red

Spot

CSU CS 314 Copyright © James M. Bieman 2000-2016 6-35

