To appear in Proc. IEEE Int. Symp. Software Reliability Engineering

(ISSRE) 2002.

Mutation of Java Objects

Roger T. Alexander, James M. Bieman, Sudipto Ghosh, Bixia Ji
Department of Computer Science
Colorado Sate University
Fort Collins, Colorado 80523

Abstract

Fault insertion based techniqueshave been used for mea-
suring test adequacy and testability of programs. Mutation
analysisinserts faultsinto a programwith the goal of creat-
ing mutation-adequate test sets that distinguish the mutant
fromtheoriginal program. Software testability is measured
by calculating the probability that a programwill fail onthe
next test input coming from a predefined input distribution,
given that the software includes a fault. Inserted faults must
represent plausible errors.

It isrelatively easy to apply standard transformationsto
mutate scalar values such asintegers, floats, and character
data, because their semantics are well understood. Mutat-
ing objects that are instances of user defined typesis more
difficult. Thereisno obviousway to modify such objectsina
manner consistent with realistic faults, without writing cus-
tom mutation methods for each object class. We propose a
new object mutation approach along with a set of mutation
operators and support tools for inserting faults into objects
that instantiate items from common Java libraries heavily
used in commercial software aswell asuser defined classes.
Preliminary evaluation of our techniqueshowsthat it should
be effectivefor evaluating real-world softwaretesting suites.

Keywords. Faults, Java, mutation analysis, object-
oriented programming, software testing, test adequacy,
testability

1. Introduction

Program testing is an integral part of software develop-
ment processes. Testing a program involves the creation of
test cases, the execution of the program against these test
cases, and the observation of program behavior to determine
correctness. A test case is a sequence of input values sup-
plied to a programto test it, along with the expected output.
A test set is a set of one or more test cases. A test caseis
successful if the observed behavior conforms to functional

requirements; otherwise, the test fails. Success may be de-
termined with the help of an oracle that compares the ob-
served output with the expected (correct) output.

Test adequacy assessment is the evaluation of how thor-
ough the testing was, and is an indicator of the goodness of
the test sets. An adequacy criterion is defined as a predi-
cate that defines what properties of a program must be ex-
ercised to congtitute a thorough test [11]. The term cover-
age domain denotesa set of program related entitiesthat are
checked and counted for measuring coverage. Within apro-
gram these entities include functions, statements, decisions,
and definition-use pairs. Test coverageis measured with re-
spect to a particular coverage domain and reflectshow much
of that domain has been executed and tested.

Testability is defined by the IEEE Standard Glossary of
Software Engineering Terminology (1990) as:

“(2) the degree to which a system or component
facilitatesthe establishment of test criteriaand the
performance of tests to determine whether those
criteriahave been met, and (2) the degreeto which
a requirement is stated in terms that permit es-
tablishment of test criteria and performance of
teststo determinewhether those criteriahave been
met.”

Voas [21] defines testability as the likelihood of a pro-
gram failing on the next test input from a predefined input
distribution, given that thereis afault in the program.

Fault insertion based approacheshave been used for mea-
suring test adequacy [7, 5, 17] and testability [20]. Mutation
analysisinserts faultsinto a program with the goal of creat-
ing mutation-adequate test sets that distinguish the mutant
fromthe original program. Software testability is measured
by seeding faults into a program. In both cases, inserted
faults must represent plausible errors. Itisrelatively easy to
apply standard transformationsto mutate scalar values such
as integers, floats and character data, because their seman-
ticsarewell understood. Inserting faultsinto objectsthat are
instances of user-defined typesis more difficult. Thereisno
obviousway to modify such objects in a manner consistent

bieman
To appear in Proc. IEEE Int. Symp. Software Reliability Engineering (ISSRE) 2002.

with realistic faults, without writing custom mutation meth-
odsfor each class. For example, one may define a mutation
operator that nullifies an object reference. However, the op-
erator is actually being used to change an object reference
(which is scalar) and not necessarily the state of the object
itself. The semantics of an object reference may be under-
stood without knowing the semantics of the object itself. To
mutate an object, one needs to know its semantics. Why is
the ability to mutate user defined-typesimportant? Because
of the proliferation of user-defined typesin software written
using object-oriented (OO) languages.

Traditional mutationtechniquesuse operatorsthat are ap-
plied to constructs (variabl es, constants, operatorsand state-
ments) in program code. These techniques cannot be easily
extended to object-oriented programs where the variables
usually represent objects (actually object references). Some
OO mutation approaches use mutation operators that oper-
ate at code level to mutate aspects of attribute and method
visibility, and inheritance. However, they do not addressthe
important issue about object semantics.

In aprior paper, we introduced a new approach to object
mutation that involves the definition of mutators (short for
mutation operators) for classes of objectsthat need to be mu-
tated [2]. We found that it is not necessary to define muta-
tors for every class. We can mutate Java library items that
are heavily used in commercia software. We can select ap-
plicable mutators based on (1) the inheritance hierarchy of
classes and (2) the hierarchy of available mutators.

This paper further refines our approach to object muta-
tion and describes our mutator operations and support tools.
We have implemented an Object Mutation Engine that se-
lects appropriate mutators and applies them to mutate ob-
jects. Our mutatorsare applied to objectsat run-time, unlike
other approaches where mutants are created from program
code, compiled and then executed. Preliminary evaluation
of our techniqueindicatesthat reusablelibraries of mutation
components can effectively insert faultsinto objectsthat in-
stantiate items from the common Javallibraries.

The remainder of this paper is organized as follows. We
summarize background material on mutation analysis in
Section 2. We describe our object mutation approachin Sec-
tion 3 and explain the Object Mutation Enginein Section 4.
We demonstrate our approach in Section 5. In Section 6
we present our conclusions and outline directionsfor future
work.

2. Background on Mutation Analysis

Mutation analysisinvolves the modification of programs
to see if existing tests can distinguish the original program
from the modified program (also called mutant). The mu-
tants must compile. Traditionally, syntactic modifications
have been used and they are determined by a set of mutation

operators. Thisset isdetermined by the languageof the pro-
gram being tested and the mutation system used. Mutation
operators are created with one of two goals: (1) to induce
simple syntax changes based on errorsthat programmer typ-
ically make (e.g. use a wrong variable name), and (2) to
force common testing goals (e.g. execute each branch).

Mutation testing relies on the Competent Programmer
Hypothesis and the Coupling Effect. The Competent Pro-
grammer Hypothesis states that programmers are generally
competent and produce a program close to a correct pro-
gram. A correct program can be constructed from an incor-
rect program by making changes that are composed of mi-
nor aterations. The Coupling Effect states that test cases
that distinguish programswith minor differencesfrom each
other are so sensitive that they can distinguish programs
with more complex differences. The competent program-
mer hypothesis and the coupling effect imply that small
changesin programsare adequateto help reveal complex er-
rors.

An example of aprogrammer error in aC programistyp-
ing z > y instead of the intended z >= y. Thus, one may
define a mutation operator that takes an expression contain-
ing >= and replaces it with >. The goal for the tester is
to create a test case that can detect a difference in the out-
puts of the program containing >= and the mutant contain-
ing >. Other examples of mutation operatorsinclude (1) re-
place a binary operator by another, (2) replace avariable by
another variable used in the program, and (3) replace a con-
stant by another constant. Mutation operators were defined
for procedural programming languages such as Fortran [6]
andC[1, 3, 4].

Let P be the program under test and P, be one correct
version of P. If P iscorrect, P and P, arethe same. 7 is
the set of tests used to test P. Let theinput domain of P be
denoted by D. Mutation testing relies on a set of faults 7.
Each fault f in F isintroduced in P one by one. Introduc-
tion of afault into P resultsin aprogram M that is dightly
different from P. The program M is called a mutant of P.
The application of all the faultsin F one by oneinto P pro-
ducesaset of mutants M. Elementsof F are known as mu-
tation operators. When a mutant M is executed against a
test caset in 7 and the behavior of M isdifferent from that
of P, themutant M issaidto bekilled by ¢. A tester is ex-
pected to kill each mutant in M with at least onetest case t.
In case a mutant cannot be killed, the tester needs to show
that M = P or update 7 by adding atest caset’ ¢ 7 that
kills M. A mutant that is not killed during testing is said to
belive. The adequacy of 7 isdetermined by the ratio of the
number of mutants killed to the number of non-equivalent
mutantsin M. Thisratio is aso called the mutation score.
T isconsidered adequate if the mutation scoreis 1.

2.1. Mutation Operators for Object-Oriented Pro-
grams

Mutation operators defined for procedural languages
such as Fortran and C are also applicableto Java. However,
Java has several additional featuresthat arise out of the OO
programming paradigm. Offutt et al. [18] applied mutation
analysisto Ada programs and addressed some of the object-
oriented features, but the analysis was limited to properties
within a class and did not addressinheritance.

Kim et al. [12, 13] used Hazard and Operability Studies
Analysis (HAZOP) to define mutation operators for Java.
HAZOP was applied to the Javasyntax definition to identify
deviations of Java language constructs. The analysis pro-
vided a list of Java mutation operators and helped create a
database of flaws for Java programs. The operators apply
to types and variables, modifiers, class and interface dec-
larations, blocks and expressions. Specifically, class muta-
tiontargetsfaultsrelated to the OO-specific features of Java:
(1) class declarations and references, (2) single inheritance,
(3) information hiding and (4) polymorphism. The proposed
Java mutation operators represent “generic” faults that do
not take object semantics into account. Several operators
listed by Kim et a. will result in mutants that do not com-
pile. Theissue of integration testing is not addressed. While
there are some operatorsthat mutate parameters of methods
to model the faults related to erroneous use of overloaded
methods, there could be other sources of integration errors.

An object possesses state and makestransitionsfrom one
state to another. Mutation operators that are applied to pro-
gram code are not effective in ensuring that objects will go
through different states. The necessity for testing of ob-
jects in different states has been shown in several testing
techniques: Doong and Frankl [8], Kirani and Tsai [14] and
Kung et al. [15].

2.2. Mutation Analysisfor Integration Testing

Delamaro et al. [4] first described the technique of in-
terface mutation for the integration testing of C programs.
The underlying ideaisto create mutants by inducing simple
changes only in the entities belonging to the interface be-
tween modules or sub-systems. The technique is designed
to be scalable with the size of the software under test. The
size is measured as the number of sub-systems being inte-
grated. To address the mutant explosion problem normally
associated with traditional mutation techniques, the inter-
face mutation approach (1) restricts the mutation operators
to model only integration errors, (2) tests only the connec-
tions between two modules, apair at atime, and (3) applies
theintegration mutation operatorsonly to moduleinterfaces
such as function calls, parameters or global variables.

Ghosh and Mathur [10] applied interface mutation anal-

ysis to distributed object systems. They defined interface
mutation operators based on interface descriptions that de-
scribed methods and exceptions. Operators would be ap-
plied to method parametersand return values. Testerswould
mutate the client program’s method call or the definition of
the method implementationin the server. A server mutation
affectsall the callers of the mutated method.

The mutation operators for interface mutation as de-
scribed above can be easily defined and applied when the pa-
rametersare scalars. However, mutating parametersthat are
objectsis more difficult. State mutation operators cannot be
applied statically to a program, because the state of the ob-
ject depends on program execution. In addition, the inter-
face mutation operators cannot represent state errors caused
by specific sequences of method execution. Such errors de-
pend on the order of operations and not necessarily on the
values of the arguments.

3. Approach

A goal of our work isto identify plausible faultsthat can
beinjected into objectsto put theminfaulty statesfor instan-
tiations of arbitrary user-defined types. Identifying mutation
operatorsisdifficult. We begin by analyzing the JavaAppli-
cation Programming Interface (API) and identify mutation
operatorsthat apply to instantiationsof classesdefinedinthe
API.

Instead of defining operatorsfor each class, we define op-
eratorsthat can apply to awhole group of classesthat imple-
ment a certain interface. For example, we look at mutation
operators (mutators) that apply to the following interfaces:

1. Container types defined in the interfaces, Collection
and List inthe packagej ava. uti | .

2. lteratorsdefinedin theinterface Iterator in the package
java. util.

3. InputStream defined in the abstract class InputStream
in the packagej ava. i o.

class C {

public void m(Foo f) {

PN ORWONE

Figure 1. Code of Class C

Thecodein Figure 1 showsaclass C containingamethod
() which takes aparameter f that references an object of
typeFoo. Thecodeinsidemisnot shown. Thecodeusesthe

parameter f for computation. We wish to mutate the object
boundtof beforeitisused. Thiswill involveinserting just
after line 3, the statement shown below.

f = (Foo) njectMtationEngine.nutate(f);

We can also mutate an object returned by a method as
showninFigure2. Todothis, weplacethemnut at e call just
priortother et ur n statement. The ObjectMutationEngine
implementsthenut at e methods. Inserting callsto the Ob-
jectMutationEngine is relatively easy using a code instru-
menter that builds a parse tree and instruments certain nodes
in the tree with the nut at e method.

class C {
public Bar m (Foo f) {
Bar b;

return b;

BOooNoOkrwbdE

Figure 2. Mutation of Return Statement

Thedetails of the ObjectMutationEnginearedescribed in
Section 4.

3.1. Default mutators

For an instance of an arbitrary user-defined type we look
at the fields of the object. The Java reflection APl enables
usto identify the types of objects. Thisappliesto publ i c,
privat e and pr ot ect ed fields. If the field is a scalar,
we apply the traditional scalar mutators as follows:

1. Increment the value by 1
2. Decrement thevalueby 1
3. Set the value to a constant

For fields that are objects we use our new mutators. |f
we know the semantics of the objects, it is easier to se-
lect the mutators. In case we do not know the seman-
tics, certain default mutators can be applied. A default mu-
tator could be one that makes an object reference nul | .
This mutation may not be useful as it will probably raise a
Nul | Poi nt er Excepti on. Moreover thisis an opera-
tion that is applied to the reference, not the object. Thismu-
tation treats a variable that refers to an object as having an
underlyingtypeof “referenceto object” and takes advantage
of knowledge of the semantics of variables of this sort. All
that it can dowith avariablethat isan object referenceistake
itsvalue, assignit avalue, test for equality between two such

variables(i.e. dothey refer to the same object), and derefer-
ence its value (i.e. using the member access operator).

Another mutator for arbitrary object typesis onethat re-
cursively appliesmutatorsto the nested fields until the scalar
fields are reached. The following mutators can aso be ap-
plied:

1. Cloning the object referred to by the variable and as-
signing the reference to the cloneto the variable. For a
testing perspective, this would test the sensitivity of a
program to the identity of an object as opposed to the
state of the object.

2. Creating a new object whose type is compatible with
the declared type T' of the object reference. In other
words, we can instantiate a new object whosetypeisa
descendant D of T'. Options here would be to have the
state variables common to both D and T be the same.
That is, the two objectswould be the same with respect
to their common ancestors. They could be the same
from either an equality perspective(i.e. shallow copy),
or from the perspectiveof equivalency (i.e. deep copy).

3.2. Mutatorsfor containers

Java provides several container interfaces, such as
Col l ectionsandlterat ors. Classesthat implement
these interfaces are also provided as part of the API. We
identify mutatorsfor theseinterfacesand classes using their
semantics.

3.2.1 Mutatorsfor the Collection interface

The following mutators are implemented for the
Col | ecti on interface.

1. Makethe Collection empty:

In Java every Col | ect i on needs to implement the
method cl ear () . Themutate method for making the
Col | ect i on empty wouldjustinvokethecl ear ()
method on this object. This mutator models errors re-
lated to inserting elementsin an unintended collection,
or accidental removal of elementsfrom a collection.

2. Remove an element from the Collection:

The element to be removed from the Col | ect i on
could be the firgt, last or some random element. Ev-
ery Col | ecti on providesar enove() method that
takes an object as a parameter. We can select the
first, last or random object by using thet oArr ay()

method on the Col | ect i on and getting an array of
Objects. We can index this array and select any object
to be removed. This mutator models errors that occur
becausethe programmer forgot to put an elementinside
the collection (may be an off-by-oneerror).

3. Add an element to the Collection:

We can add some arbitrary element to the
Col | ecti on using the add() method provided in
any Col | ection. This element could be a clone
of some existing element. Alternatively, the element
constructor that takes no parameters or the default
constructor of the element, if available, can be used to
create a new element. This mutator models redundant
additions of elementsinto a collection.

4, Mutatethe elements:

For every element inside the Col | ect i on, the mu-
tate method for the element’ stypecan beinvoked. This
mutator is used to recursively apply mutation to ob-
jects.

5. Reorder m of then elementsin the Collection:

A collection may be implemented using a class that
makes use of ordering. Thismutator modelserrorsthat
may be made in the ordering. Since there is no no-
tion of order embodied in a Col | ect i on, and there
is no method provided in the API that can manipulate
the order, we cannot apply the reorder mutator to the
Col | ecti on interface directly. We can till use the
methodt 0Ar r ay() to obtain an array of the objects,
reorder thearray and createanew Col | ect i on from
the abjectsin the array.

3.2.2 Mutatorsfor thelterator interface

Thel t er at or interface provided in the Java APl alows
one to obtain the next element in the iteration using the
method next () . We define a skip mutator that makes the
iterator skip elements. The skip mutator isimplemented by
a nut at e method that calls the next () method one or
more times.

This mutator does not affect all instances of the mutated
type but just the instance held by some client. Since we are
only mutating oneiterator and not the original container, any
other client using the container or adifferent iterator over the
container will not see a difference. This mutator is similar
to the Remove element mutator except that it must be de-
tected by testing code that deal swith the iterator and not the
collection itself.

3.2.3 Mutatorsfor List and Vector

The mutators defined for the Col | ection and
I terator interfaces apply to the Li st interface as
well. The faults they model are similar as well. In ad-
dition, the Col | ecti ons class provides a number of
static methods, such as shuffle(List list) and
shuffle(List Iist, Randomrnd) that can be
used to reorder the elementsin theLi st .

The specific semantics of implementations can be used
to mutate container objects. For example, a binary tree has
anotion of ordering. Thisnotion can be used toimplement a
reorder mutator. The following mutators are implemented
for Li st and Vect or:

1. Randomly reorder the elementsintheLi st .
2. Deletethefirst/last/any element fromtheLi st .
3. Delete thefirst/last/any element from the Vect or .

3.3. Mutatorsfor map

The following mutators are implemented for Map.

1. Deletethefirst mapping.
2. Deletethe last mapping.
3. Empty the map.

3.4. Mutatorsfor inputstreams

The | nput St r eamabstract class in the Java APl pro-
vides a method called ski p(1 ong n) which skips over
and discards n bytes of datafrom thisinput stream. We de-
fine a mutator for inputstreams that results in the skipping
of bytes of data. This mutate method will call the ski p()
method with an appropriate length parameter.

3.5. Mutator sfor user-defined classes

We implemented mutators for two user-defined classes
Regi on and G- aphEdge that were written for two appli-
cations, (1) Paint and (2) GraphPath respectively.

The mutatorsfor Pai nt are:

1. Increment_by_one the height of a parent.
2. Increment_by_one the width of aregion.
3. Increment_by_one the width and height of aregion.

The mutator for G aphPat h is:

1. Increment_by_one the number of graph edges.

4. Architecture of Mutation Engine

The abstract components of the Object Mutation Engine
(OME) architecture are depicted in Figure 3. The parallel-
ograms represent separate threads of control, the rectangles
represent sequential processesthat are executed by athread,
and the circles represent data. The dashed directed line seg-
ments between the threads or sequential processes represent
control flow. The solid line segments superimposed with a
circle represent both control flow and specific types of data
flow. Thisarchitectureisrealized by a Javaimplementation
that provides abstractions and concrete typesfor each archi-
tectural component.

One per test
configuration |

OME
Executor

Test
Manager,
(Thread)

Starts

Configurations

(Thread)

]
IStarts
1
1

Evaluator
(Thread)

writes

Rendered
Test
Results

Test Execution Context

Mutator

Test
Driver

s writes

reads

State
Inspector

l writes
reads

Test
Outcome

Result
Writer

Results
Collector

reads
writes

Test Oracle

Figure 3. Architecture of the Object Mutation Engine

Asthethreadsdepicted by Figure 3 suggest, theOME isa
concurrent system following a master-slave model of com-
putation. It is envisaged that the OME will ultimately be-
come a distributed system whereby individual tests will be
parceled out to different nodes of a network. The objective
is to reduce the amount of time required to conduct muta-
tion testing, thereby overcoming one of its perceived weak-

nesses.
4.1 Execution of theOME

The execution of a single test within the OME begins
when the OME Executor reads a test configuration. A test
configuration contains parameters that describe the charac-
teristics of the Class Under Test (CUT). This includes the
fully qualified name of the CUT, thefully qualified name of
thetest driver to use, the number of locationswithinthe CUT
where a mutation operation will be applied, and the set of
mutation operatorsthat will be applied.

Upon reading a test configuration, the OME Executor
creates a new Test Manager that will configure and run the
test. The Test Manager runson its own thread of execution.
When created, it first establishes the environmental condi-
tions necessary to execute the test. This includes loading
the mutation operators that will be used during the test, and
loading the Sate Inspector that will be used to capture state
of the CUT and other objects. The Test Manager then loads

the Test Driver that is specific to the CUT and that will exe-
cute the actual test.

When executed, the Test Driver performs initializations
that are specific to the test and to the CUT. For example,
thismight includeinitializing database connections, staging
test data, and so on. After completing initialization, the Test
Driver creates the instance of the CUT that will be tested,
and then executesthe test. Thisis accomplished by making
calsintothe CUT instancethat are necessary to carry out the
test. Upon conclusion of the test, the Test Driver performs
any cleanup actionsnecessary and then terminates, returning
control to the Test Manager. The Test Manager then signals
completion of the test back to the OME Executor and then
terminates.

4.2 Variation within thetesting process

One of thekey objectivesof the OME isto provideagen-
eral purpose framework that can support mutation testing
of object-oriented programs. To accomplish this, the OME
takes into consideration the variation that must necessarily
occur due to syntactic and semantic differencesin classes.
There are five areas in which this variation may occur:

1. Variation in the class C that is the subject of the test:
C is referred to generically as the Class Under Test
(CUT). The syntactic interface of C and C's behavior

Manages the enti
mutation engine.

Records the state of & -
articular type of objer Temporarily Stores resulf
P : (state, console output, et
| that accumulate during tt

I execution of a test..

H
a‘] ome.inspectors.lnspecl
L

single test configuratiokl

Thread
OMEEXxecutot|

Mutates the state
of a object of a

particular type T o
T's descendants.

Thread|
TestEvaluator|

ome.mutators.Mutat
’

|
|
} Manages execution of
|
I
|
|

*ResultsCollector

|
|
Writes results |
in a specified formz }
|
|

Q Placeholder for the actul
Compares results ome.testDrivers.TestDrivel I that is th biect
of mutated subjects witl 7 . ?ais atIs the subjec
results of original subje esting.

Figure 4. UML Class Diagram of OME

are unpredictable. Consequently, it is not possible to
write a generic framework that can make any assump-
tions about the actual classes that will be tested.

. Variation in the driver that executes C under the con-
ditions of a test: Because of difficultiesin (1), it is not
possible to write ageneric test driver that can establish
the conditions necessary to execute atest of C.

. Variation in the operators that are used to mutate the
state of objects that occur during the course of a test:
Thistoo is a consequence of (1). Because the seman-
tics of C can specify any behavior, the operations used
to mutate instances of C cannot be predicted. Thus,
it is not possible to automatically generate mutations
without prior knowledge of therequired operationsand
their semantics.

. Variation in the mechanism that is used to capture the
state of C and related objects: C is a user-defined type
and has a concrete representation that is the foundation
of its implementation. Part of this representation will
likely include instances of other types, some of which
will be scalars (e.g. integers and floating point num-
bers). and others will also be user-defined types. Be-
cause of the wide variation of types available for use,
it is not possible to know in the general case the form
in which to capture the internal state of C. For scalar
types, astring representation is straightforward, but not

for user-defined types. For example, what should the
form be that is used to capture the value (state) of an
instance of a carburetor?

5. Variationinthemechanismthat collectsthe output pro-
duced by C during the execution of a test: Ultimately,
programs are written for the output that results from
their computation. Thisoutput hasthe potential to take
an infinite number of representations. In the simplest
case, the output can simply betext written to aconsole.
In more complicated cases, the output could be some-
thinginthefile system, such asthe creation of anew file
or modification to an existing file. More complicated
cases include modifications to relational databases, or
output to a graphical user interface.

The OME accounts for the variation described using
mechanisms that isolate and abstract away the physical de-
tailsof any particular C. Thefollowing subsectionsdescribe
each of these mechanisms and the other components of the
OME in detall.

4.3 Componentsof the OME

As noted at the beginning of section 4, the OME isim-
plemented using the Java programming language. Figure 4
depictsaUML classdiagram that illustrates a portion of the
static structure of the OME'’s implementation. In particu-
lar, thediagram showsthe key abstractionsthat comprisethe

implementation, and their relationships. Thefollowing sub-
sections describe each of these abstractionsin detail.

431 OME Executor

Asdepicted in Figure 3, the OME Executor playstherole of
amaster process that controls the execution of tests. Within
theimplementation of the OME, it isrepresented by theclass
OMEExecutor, as shown in Figure 4. The primary respon-
sibility of this classisthe loading of test configurationsand
creating corresponding test jobs that will managethetesting
activities. To accomplish this, the OMEExecutor creates an
instance of TestManager (section 4.3.2) and delegates to it
the responsibility for overseeing the execution of a particu-
lar test jaob.

The OMEExecutor aso is responsible for initiating one
or more processes that will provide a testing oracle func-
tion. This is done by creating instances of TestEvaluator,
each running on separate threads of control. Upon comple-
tion of atest job, the OMEExecutor assigns the responsibil-
ity for evaluating the results of thetesting activitiesto anin-
stance of TestEvaluator.

4.3.2 Test Manager

As described in section 4.3.1, instances of TestManager
oversee the activities associated with aparticular test job. A
test harness establishes any necessary environmental condi-
tions required to support a test, loading the proper instance
T of TestDriver associated with the CUT, providing amech-
anism for collecting test results (ResultCollector), and mak-
ing the mechanismsfor state inspection (Inspector) and the
rendering of results (ResultsWriter) availableto T.

Instances of TestManager must also know which muta-
tion operators will be applied during a particular test along
with the number of times each mutation operator must be ap-
plied (i.e. the number of locationswithinthe CUT). Thisin-
formation is passed from OMEEXxecutor as part of the test
configuration.

4.3.3 Statelnspectorsand Results Collection

One of the general problems with testing is that of cap-
turing the results that must be used to determine the out-
come. This problem is worse for OO software due to the
decreased observability that results from encapsulation in-
formation hiding [19]. A complicating aspect of this prob-
lem is that output can occur in many forms, such as di-
rect console output, changes to a local file system (e.g.
creating/updating/del eting files and directories), updates to
databases. In general, there is a plethora of different mech-
anisms that can produce output. Thus, it is not possible
to write a general purpose mechanism that can capture all
forms of output.

To overcome part of these problems (at least for software
written in Java), the OME has a family of mechanismsthat
examinethe state of arbitrary typesof objects. Thisfamily is
defined by the class Inspector shownin Figure4. Each class
in this family is capable of inspecting the state of a specific
typeof object. For example, the OME includestheclass De-
faultinspector that providesthe capability of inspecting the
state of instances of the most general typejava.lang.Object.

When afield f isinspected, the type of the object bound
to f is used to determine the specific kind of inspector to
use. Thus, each type of inspector is written to inspect the
state of aspecifictypeof object (referredto astheinspector’s
characteristic type). Theinspector that is selected isthe one
whose characteristic type is the closest in an inheritance hi-
erarchy to the type of the instance bound to the field. Thus,
a given inspector may be applicable to a number of differ-
ent types of objects (specifically those that are instances of
descendants of the inspector’s characteristic type).

If the type of a particular field f in an object being in-
spected does not match an existing inspector, an instance of
Defaultlnspector isused to capturef’svalue. If f isof atype
unknown to Defaultlnspector, itsvalueisrendered using the
toString provided by the classjava.lang.Object (thisclassis
the parent of all other user-defined typesin Java). The OME
also includes a predefined class Sringl nspector that is used
to capture the state of instances of this type.

Instances of Inspector populate an instance of ResultCol-
lector with the values of the state variables of an arbitrary
object 0. The Java Reflection API is used to gain access to
o0 to query itsindividual fields for their values. These val-
ues are rendered as strings and stored as key/value pairsin
an instance of ResultCollector. Ambiguities are avoided by
having the keys structured as stylized names that include
the fully qualified names of the state variables contained in
the definition of the actual type of the object bound to o.
The keys also embed the type of the field, asillustrated by:
java.lang.System.out[java.io.PrintStream|

Inspectors are used during the testing process by calls
embedded in the CUT at locations where the recording of
intermediate and final state is required. Typically, the latter
will be performed just prior to where control returns from a
method that is executed as part of the test.

For capturing other forms of output, specialized types of
ResultCollector can be written that know how to capturethe
various forms of output that a given CUT produces. The
details of this vary widely from one CUT to the next. The
default ResultCollector within the OME has the capability
of capturing 1/0O written to the standard output and standard
error devices. Thisinformation is buffered in the local file
system until thefinal results of the test are rendered (section
4.3.4).

4.3.4 ResultsRendering

Resultsmay berendered fromagiventestin anumber of dif-
ferent ways. The mechanism (ResultsWriter) employed by
the OME allows the definition of custom mechanisms that
can render test resultsin any arbitrary form. By default, re-
sults are rendered as simple textual representations of the
key/value pairs contained in an instance of ResultCollector.
The OME dso includes a specialized ResultCollector that
renderstest resultsand capture output asan XML document.
Thisis then used by the TestEvaluator to determine the test
outcome.

435 Test Drivers

Each CUT C represents a type defined by a distinct syntac-
tic unit that has a unique semantics. A consequence of this
is that writing a general purpose test driver that can be ap-
plied to any C isimpractical. Such atest driver D would be
required to have the capability to establish the environmen-
tal conditionsfor any C, and be ableto create instances of C
for testing. Given that the set of all C is potentially infinite,
writing D would not be possible.

Recognizing that all test drivers can be considered the
samefromavery abstract perspective, it ispossibleto define
a common interface and associated behaviors that each D
would possess. For example, each driver must initialize en-
vironmental conditions, load test data, execute one or more
tests, and record results. While the specifics of these activi-
tiesarelikely to be different for any two test drivers, all test
drivers can be assumed to have these activities and execute
them in the same order. Thisassumption underliesour Test-
Driver abstraction contained within the OM E which utilizes
aTemplate Method design pattern [9] to definethealgorithm
for executing atest that all test driversuse. Essentialy, this
algorithm consists of steps that first perform whatever ac-
tionsare necessary to setup for atest, runsthetest, cleansup,
and finally records results. Each step is delegated to an ab-
stract method that each concretetest driver must implement.
Thus, generality in the test driver is achieved by taking ad-
vantage of inheritance.

Each concrete test driver has several responsibilities
within the OME that must be satisfied. The driver must
know how to create the environmental conditions necessary
to execute its associated test. This could include creating
files, database connections, and so on. The driver must also
know where to get its test data from. This could, for exam-
ple, be defined within the driver itself, or could exist in afile
or external database. Perhaps the most important responsi-
bility the driver hasis in creating the instance of the CUT
that will be used as the test subject.

4.3.6 Mutation Operators

The source code of the CUT is instrumented with calls to
mutation operators (and to the instance of Inspector). Calls
to mutation operators are inserted within the methods of the
CUT at locations that involve objects that are of interest
from atesting perspective. Typically, these will beimmedi-
ately before or after locations that have calls to methods or
statements that reference the state of a particular object in
some manner. The particular mutation operator used is de-
termined by the declared type of the object referenceused at
aparticular location of interest. The basic ideais to create
a specia mutator class for each type or family of typesthat
need to be mutated. These mutator classesimplement amu-
tate method to support fault models relevant to a particular
type— interface or class— and make use of the underlying
semantics of the type.

Each mutation operator isimplemented asa classthat is
a descendant of the Mutator class, shown in Figure 4. This
class specifiesthe method rmut at e that takes areferenceto
an instance of java.lang.Object. The characteristic type of a
mutator is that of the actual type of the mutation candidate
(i.e. thereferencethat isbound to an object that will be mu-
tated). Similar to the use in inspectors (section 4.3.3), the
characteristic typeis used to identify the types of object that
the mutation operator is compatible with. Thus, generality
for mutation is achieved by alowing the definition of cus-
tom operationsthat are specific to particular types.

4.3.7 Test Evaluation

Once a test is complete, as described in section 4.3.1, the
OMEEXxecutor callsonaninstance of TestEvaluator to deter-
minethe outcome of a particular test. TestEvaluator, shown
in Figure 4, is an abstract class that defines a set of com-
mon behaviorsand interfaces. Thisallowsfor the definition
of custom test evaluation mechanisms. Thisis necessary to
achieve generality since the differencesin test results and
output will have a high degree of variation.

5. Demonstration of OME

We used the OME to mutate a sel ection of Javaprograms.
The applied mutationsinclude a set of mutators designed to
mutate both standard Java library objects and custom mu-
tators that can inject faults into user defined class objects.
Only asmall set of mutators were implemented for thisini-
tial demonstration of the OME. The standard library muta-
torsinclude the following:

e in ome.mutators.java.util:

— CollectionMutator: seven mutate methods del ete
or add an object from or toaCaollection, or change
the order of the objectsin a Collection.

Table 1. Applying the OME to five example programs.

Number of | Num Actual | Number of Number of
Potential Mutated Mutators Number of | Number of Mutants
Program L ocations Locations | Per Location Tests Mutants Killed
Ant 21,065 16 1-7 2 53 28
Junit 1,478 4 6 1 24 16
GraphPath 142 6 1-7 8 21 10
Paint 323 4 3 13 12 8
MazeGame 1,624 6 3 6 18 12

— ListMutator: two mutators— one deletesthe |ast
element in a Ligt, the other changes the order of
List elements.

— VectorMutator: deletesthelast object in aVector.

— MapMutator: three mutators — one deletes the
first element, onedeletesthelast element, and one
makes a Map empty.

— lteratorMutator: skipsthe next object.
e in ome.mutatorsjava.io:

— InputStreamMutator: skips a random number of
bytesin an input stream.

We applied the library mutations and some custom mu-
tations to classes in a selection of Java programsincluding
open source programs and programs used for classroom ex-
amples and assignments:

e Ant: a build tool from Apache. We mutated class
org.apache.tools.ant.Projectin version 1.4.1 of jakarta-
ant. Three library mutators were applied: Collection-
Mutator, MapM utator, and | nputStreamM utator.

e Junit: a unit testing framework written by E.
Gamma and K. Beck. We mutated class ju-
nit.framework.TestSuite in Junit 3.7. Collection-
Mutator was applied.

e GraphPath: finds the shortest path and distance be-
tween specified nodes in a directed graph using Dijk-
stra's shortest path algorithm. CollectionMutator, It-
eratorMutator, and I nputStreamM utator were applied.
In addition, a custom mutator modified the length of a
graph edge by one.

e Paint: calculates the amount of paint needed to paint a
house. Thisprogramisadapted from atext by Lambert
and Osborne[16]. A custom mutator modifies a paint-
ing region by adding one to the height and/or width.

10

o MazeGame: agamethat involvesfinding and rescuing
a hostage in amaze. This was a development assign-
ment in a software engineering course. MapM utator
was applied.

Table 1 showsthe number of locationsthat were mutated
and the number of mutators that were generated for each
program. Only half of the 128 mutant programswerekilled
by our test data. We do not claim that our test datawas com-
prehensive — we did not generate a large number of test
cases. However, only a few test cases were needed to kill
half of the mutants. It is also clear that the mutations rep-
resent plausible errors — the mutants had some chance of
surviving the testing process, since half of the mutants re-
mained alive.

This demonstration representsonly asmall fraction of all
possible mutations for the selected programs. We mutated
only afew locationsin one class for each program. Thisis
especially obviousin Ant where we mutated only 16 out of
21,065 possible locations, where each possible location is
where a method is called. We leave the problem of how to
optimally select locationsto mutate as futurework. Our ob-
jective hereisto demonstrate that our methods for mutating
objects can be applied to rea programs.

6. Conclusions and Future Work

We described a technique for performing mutation anal-
ysis on object-oriented programs by injecting faultsinto ob-
jects. Our techniques make mutation work for OO software.

We showed that reusable libraries of mutation compo-
nents can effectively inject plausible faults into objects that
instantiate items from common Javalibrariesaswell asuser
defined classes. Since Java library items are heavily used
in commercial software, our technique should be effective
for evaluating the real-world software testing suites. We can
also develop custom mutators for user-defined types.

We designed an object mutation engine that implements
our technique. We are now assessing the effectiveness of
this technique. The design of the Object Mutation En-
gine is flexible. It can inject a wide variety of mutations

into running programs, and can be extended to support new
fault models. With our techniques and tools, mutation of
component-based systemsis also possible.

Our next task isto experimentally eval uate the obj ect mu-
tation technique. We are investigating the cost of using the
mutation framework and the gains of using our mutation
technique. From these experimentswewill have abetter un-
derstanding of several issues— scalability, relativefault de-
tection capabilities of test suites created using different sets
of mutators, and the adaptability of the mutation framework
to different application types. We will also be able to de-
velop a set of guidelinesthat will aid the tester in using the
object mutation technique on a particular application.

References

[1] H.Agrawal, R. DeMillo, R. Hathaway, W. M. Hsu, W. Hsu,
E. Krauser, R. J. Martin, A. Mathur, and E. Spafford. De-
sign of Mutant Operators for the C Programming L anguage.
Technical Report SERC-TR-41-P, Software Engineering Re-
search Center, Purdue University, West Lafayette, Indiana,
March 1989.

J. Bieman, S. Ghosh, R. Alexander. A techniquefor mutation
of Javaobjects. Proc. Automated Software Engineering (ASE
2001). 2001.

M. E. Delamaro, J. C. Maldonado, M. Jino, and M. L. Chaim.
PROTEUM: Uma ferramenta de teste baseada na analise de
mutantes (proteum: A test tool based on mutation analysis).
In Software Tools Proceedings of the VII Brazilian Sympo-
sium on Software Engineering, October 1993.

M. E. Delamaro, J. C. Madonado, and A. P. Mathur. Inte-
gration Testing Using Interface Mutation. In Proceedings of
International Symposium on Software Reliability Engineer-
ing (ISSRE '96), pages 112-121, April 1996.

R. A. DeMillo, D. S. Guindi, K. N. King, and W. M. Mc-
Cracken. An Overview of the Mothra Software Testing En-
vironment. Technical Report SERC-TR-3-P, Software Engi-
neering Research Center, Purdue University, West L af ayette,
Indiana, August 1987.

R. A. DeMillo et a. An Extended Overview of the
MOTHRA Testing Environment. In Werkshop of Software
Testing, Verification and Analysis, July 1988.

R. A. DeMilloand A. J. Offutt. Constraint-based Automatic
Test Data Generation. |EEE Transactions on Software Engi-
neering, 17(9):900-910, September 1991.

R.-K. Doong and P. G. Frankl. The ASTOOT Approach
to Testing Object-Oriented Programs. ACM Transactions
on Software Engineering and Methodology, 3(2):101-130,
April 1994.

E. Gamma, R. Helm, J. R, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading MA, 1995.

S. Ghosh and A. P. Mathur. “Interface Mutation”. Journal
of Software Testing, Verification and Reliability, 11(4):227—
247, December 2001.

(]

(3]

(4]

(5]

(6]

(8]

(9]

(10]

11

[11] J. B. Goodenough and S. L. Gerhart. Toward atheory of test
data selection. | EEE Transactions on Software Engineering,
1(2):156-173, 1975.

S. Kim, J. A. Clark, and J. A. McDermid. “The Rigorous
Generation of Java Mutation Operators Using HAZOP”. In
Proceedings of the 12th International Conference on Soft-
ware and Systems Engineering and their Applications (1C-
SSEA'99), Paris, France, December 1999.

S. Kim, J. A. Clark, and J. A. McDermid. “Class Mutation:
Mutation Testing for Object Oriented Programs’. In Pro-
ceedings of the FMES 2000, 2000.

S. Kirani and W. T. Tsai. “Method Sequence Specification
and Verification of Classes’. Journal of Object-Oriented
Programming, pages 28-38, October 1994.

D.Kung, J. Gao, P.Hsia, F. Wen, Y. Toyoshima, and C. Chen.
“Change Impact Identification in Object Oriented Software
Maintenance’. In Proceedings of |IEEE International Con-
ference on Software Maintenance, pages 202-211, 1994.

K. Lambert and M. Osborne. Java: Complete Coursein Pro-
gramming and Problem Solving. I TP Press. 1998.

A. P. Mathur and W. E. Wong. A Theoretical Comparison
Between Mutation and Data Flow Based Criteria. In Pro-
ceedings 22nd Annual ACM Computer Science Conference
on scaling up: meeting the challenge of complexity in real-
world computing applications, pages 38-45, Phoenix, Ari-
zona, USA, March 8-10 1994.

A. J. Offutt, J. Voas, and J. Payne. Mutation Operators for
Ada. Technical Report ISSE-TR-96-09, Information and
Software Systems Engineering, George Mason University,
Fairfax, Virginia, March 1996.

J.E. Payne, R.T. Alexander, and C.D. Hutchinson. Design-
for-Testability for Object-Oriented Software. Object Maga-
Zine. pp. 34-43, 1997.

J. M. Voas and G. McGraw. Software Fault Injection: In-
noculating Programs Against Errors. John Wiley and Sons,
January 1998.

J.M. Voasand K. W. Miller. “ Software Testahility: The New
Verification”. |EEE Software, pages 17-28, May 1995.

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

