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Abstract

Fault insertion based techniques have been used for mea-
suring test adequacy and testability of programs. Mutation
analysis inserts faults into a program with the goal of creat-
ing mutation-adequate test sets that distinguish the mutant
from the original program. Software testability is measured
by calculating the probability that a program will fail on the
next test input coming from a predefined input distribution,
given that the software includes a fault. Inserted faults must
represent plausible errors.

It is relatively easy to apply standard transformations to
mutate scalar values such as integers, floats, and character
data, because their semantics are well understood. Mutat-
ing objects that are instances of user defined types is more
difficult. There is no obvious way to modify such objects in a
manner consistent with realistic faults, without writing cus-
tom mutation methods for each object class. We propose a
new object mutation approach along with a set of mutation
operators and support tools for inserting faults into objects
that instantiate items from common Java libraries heavily
used in commercial software as well as user defined classes.
Preliminary evaluation of our technique shows that it should
be effective for evaluating real-world software testing suites.

Keywords: Faults, Java, mutation analysis, object-
oriented programming, software testing, test adequacy,
testability

1. Introduction

Program testing is an integral part of software develop-
ment processes. Testing a program involves the creation of
test cases, the execution of the program against these test
cases, and the observation of program behavior to determine
correctness. A test case is a sequence of input values sup-
plied to a program to test it, along with the expected output.
A test set is a set of one or more test cases. A test case is
successful if the observed behavior conforms to functional

requirements; otherwise, the test fails. Success may be de-
termined with the help of an oracle that compares the ob-
served output with the expected (correct) output.

Test adequacy assessment is the evaluation of how thor-
ough the testing was, and is an indicator of the goodness of
the test sets. An adequacy criterion is defined as a predi-
cate that defines what properties of a program must be ex-
ercised to constitute a thorough test [11]. The term cover-
age domain denotes a set of program related entities that are
checked and counted for measuring coverage. Within a pro-
gram these entities include functions, statements, decisions,
and definition-use pairs. Test coverage is measured with re-
spect to a particular coverage domain and reflects how much
of that domain has been executed and tested.

Testability is defined by the IEEE Standard Glossary of
Software Engineering Terminology (1990) as:

“(1) the degree to which a system or component
facilitates the establishment of test criteria and the
performance of tests to determine whether those
criteria have been met, and (2) the degree to which
a requirement is stated in terms that permit es-
tablishment of test criteria and performance of
tests to determine whether those criteria have been
met.”

Voas [21] defines testability as the likelihood of a pro-
gram failing on the next test input from a predefined input
distribution, given that there is a fault in the program.

Fault insertion based approaches have been used for mea-
suring test adequacy [7, 5, 17] and testability [20]. Mutation
analysis inserts faults into a program with the goal of creat-
ing mutation-adequate test sets that distinguish the mutant
from the original program. Software testability is measured
by seeding faults into a program. In both cases, inserted
faults must represent plausible errors. It is relatively easy to
apply standard transformations to mutate scalar values such
as integers, floats and character data, because their seman-
tics are well understood. Inserting faults into objects that are
instances of user-defined types is more difficult. There is no
obvious way to modify such objects in a manner consistent
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with realistic faults, without writing custom mutation meth-
ods for each class. For example, one may define a mutation
operator that nullifies an object reference. However, the op-
erator is actually being used to change an object reference
(which is scalar) and not necessarily the state of the object
itself. The semantics of an object reference may be under-
stood without knowing the semantics of the object itself. To
mutate an object, one needs to know its semantics. Why is
the ability to mutate user defined-types important? Because
of the proliferation of user-defined types in software written
using object-oriented (OO) languages.

Traditional mutation techniques use operators that are ap-
plied to constructs (variables, constants, operators and state-
ments) in program code. These techniques cannot be easily
extended to object-oriented programs where the variables
usually represent objects (actually object references). Some
OO mutation approaches use mutation operators that oper-
ate at code level to mutate aspects of attribute and method
visibility, and inheritance. However, they do not address the
important issue about object semantics.

In a prior paper, we introduced a new approach to object
mutation that involves the definition of mutators (short for
mutation operators) for classes of objects that need to be mu-
tated [2]. We found that it is not necessary to define muta-
tors for every class. We can mutate Java library items that
are heavily used in commercial software. We can select ap-
plicable mutators based on (1) the inheritance hierarchy of
classes and (2) the hierarchy of available mutators.

This paper further refines our approach to object muta-
tion and describes our mutator operations and support tools.
We have implemented an Object Mutation Engine that se-
lects appropriate mutators and applies them to mutate ob-
jects. Our mutators are applied to objects at run-time, unlike
other approaches where mutants are created from program
code, compiled and then executed. Preliminary evaluation
of our technique indicates that reusable libraries of mutation
components can effectively insert faults into objects that in-
stantiate items from the common Java libraries.

The remainder of this paper is organized as follows. We
summarize background material on mutation analysis in
Section 2. We describe our object mutation approach in Sec-
tion 3 and explain the Object Mutation Engine in Section 4.
We demonstrate our approach in Section 5. In Section 6
we present our conclusions and outline directions for future
work.

2. Background on Mutation Analysis

Mutation analysis involves the modification of programs
to see if existing tests can distinguish the original program
from the modified program (also called mutant). The mu-
tants must compile. Traditionally, syntactic modifications
have been used and they are determined by a set of mutation

operators. This set is determined by the language of the pro-
gram being tested and the mutation system used. Mutation
operators are created with one of two goals: (1) to induce
simple syntax changes based on errors that programmer typ-
ically make (e.g. use a wrong variable name), and (2) to
force common testing goals (e.g. execute each branch).

Mutation testing relies on the Competent Programmer
Hypothesis and the Coupling Effect. The Competent Pro-
grammer Hypothesis states that programmers are generally
competent and produce a program close to a correct pro-
gram. A correct program can be constructed from an incor-
rect program by making changes that are composed of mi-
nor alterations. The Coupling Effect states that test cases
that distinguish programs with minor differences from each
other are so sensitive that they can distinguish programs
with more complex differences. The competent program-
mer hypothesis and the coupling effect imply that small
changes in programs are adequate to help reveal complex er-
rors.

An example of a programmer error in a C program is typ-
ing ����� instead of the intended ������� . Thus, one may
define a mutation operator that takes an expression contain-
ing ��� and replaces it with � . The goal for the tester is
to create a test case that can detect a difference in the out-
puts of the program containing ��� and the mutant contain-
ing � . Other examples of mutation operators include (1) re-
place a binary operator by another, (2) replace a variable by
another variable used in the program, and (3) replace a con-
stant by another constant. Mutation operators were defined
for procedural programming languages such as Fortran [6]
and C [1, 3, 4].

Let 	 be the program under test and 	�
 be one correct
version of 	 . If 	 is correct, 	 and 	�
 are the same. � is
the set of tests used to test 	 . Let the input domain of 	 be
denoted by 
 . Mutation testing relies on a set of faults � .
Each fault � in � is introduced in 	 one by one. Introduc-
tion of a fault into 	 results in a program � that is slightly
different from 	 . The program � is called a mutant of 	 .
The application of all the faults in � one by one into 	 pro-
duces a set of mutants � . Elements of � are known as mu-
tation operators. When a mutant � is executed against a
test case � in � and the behavior of � is different from that
of 	 , the mutant � is said to be killed by � . A tester is ex-
pected to kill each mutant in � with at least one test case � .
In case a mutant cannot be killed, the tester needs to show
that ����	 or update � by adding a test case ������ � that
kills � . A mutant that is not killed during testing is said to
be live. The adequacy of � is determined by the ratio of the
number of mutants killed to the number of non-equivalent
mutants in � . This ratio is also called the mutation score.
� is considered adequate if the mutation score is 1.
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2.1. Mutation Operators for Object-Oriented Pro-
grams

Mutation operators defined for procedural languages
such as Fortran and C are also applicable to Java. However,
Java has several additional features that arise out of the OO
programming paradigm. Offutt et al. [18] applied mutation
analysis to Ada programs and addressed some of the object-
oriented features, but the analysis was limited to properties
within a class and did not address inheritance.

Kim et al. [12, 13] used Hazard and Operability Studies
Analysis (HAZOP) to define mutation operators for Java.
HAZOP was applied to the Java syntax definition to identify
deviations of Java language constructs. The analysis pro-
vided a list of Java mutation operators and helped create a
database of flaws for Java programs. The operators apply
to types and variables, modifiers, class and interface dec-
larations, blocks and expressions. Specifically, class muta-
tion targets faults related to the OO-specific features of Java:
(1) class declarations and references, (2) single inheritance,
(3) information hiding and (4) polymorphism. The proposed
Java mutation operators represent “generic” faults that do
not take object semantics into account. Several operators
listed by Kim et al. will result in mutants that do not com-
pile. The issue of integration testing is not addressed. While
there are some operators that mutate parameters of methods
to model the faults related to erroneous use of overloaded
methods, there could be other sources of integration errors.

An object possesses state and makes transitions from one
state to another. Mutation operators that are applied to pro-
gram code are not effective in ensuring that objects will go
through different states. The necessity for testing of ob-
jects in different states has been shown in several testing
techniques: Doong and Frankl [8], Kirani and Tsai [14] and
Kung et al. [15].

2.2. Mutation Analysis for Integration Testing

Delamaro et al. [4] first described the technique of in-
terface mutation for the integration testing of C programs.
The underlying idea is to create mutants by inducing simple
changes only in the entities belonging to the interface be-
tween modules or sub-systems. The technique is designed
to be scalable with the size of the software under test. The
size is measured as the number of sub-systems being inte-
grated. To address the mutant explosion problem normally
associated with traditional mutation techniques, the inter-
face mutation approach (1) restricts the mutation operators
to model only integration errors, (2) tests only the connec-
tions between two modules, a pair at a time, and (3) applies
the integration mutation operators only to module interfaces
such as function calls, parameters or global variables.

Ghosh and Mathur [10] applied interface mutation anal-

ysis to distributed object systems. They defined interface
mutation operators based on interface descriptions that de-
scribed methods and exceptions. Operators would be ap-
plied to method parameters and return values. Testers would
mutate the client program’s method call or the definition of
the method implementation in the server. A server mutation
affects all the callers of the mutated method.

The mutation operators for interface mutation as de-
scribed above can be easily defined and applied when the pa-
rameters are scalars. However, mutating parameters that are
objects is more difficult. State mutation operators cannot be
applied statically to a program, because the state of the ob-
ject depends on program execution. In addition, the inter-
face mutation operators cannot represent state errors caused
by specific sequences of method execution. Such errors de-
pend on the order of operations and not necessarily on the
values of the arguments.

3. Approach

A goal of our work is to identify plausible faults that can
be injected into objects to put them in faulty states for instan-
tiations of arbitrary user-defined types. Identifying mutation
operators is difficult. We begin by analyzing the Java Appli-
cation Programming Interface (API) and identify mutation
operators that apply to instantiations of classes defined in the
API.

Instead of defining operators for each class, we define op-
erators that can apply to a whole group of classes that imple-
ment a certain interface. For example, we look at mutation
operators (mutators) that apply to the following interfaces:

1. Container types defined in the interfaces, Collection
and List in the package java.util.

2. Iterators defined in the interface Iterator in the package
java.util.

3. InputStream defined in the abstract class InputStream
in the package java.io.

1. class C {
2. ...
3. public void m (Foo f) {
4. ...
5. ...
6. }
7. ...
8. }

Figure 1. Code of Class C

The code in Figure 1 shows a class C containing a method
m() which takes a parameter f that references an object of
typeFoo. The code insidem is not shown. The code uses the
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parameter f for computation. We wish to mutate the object
bound to f before it is used. This will involve inserting just
after line 3, the statement shown below.

f = (Foo) ObjectMutationEngine.mutate(f);

We can also mutate an object returned by a method as
shown in Figure 2. To do this, we place themutate call just
prior to the return statement. The ObjectMutationEngine
implements the mutatemethods. Inserting calls to the Ob-
jectMutationEngine is relatively easy using a code instru-
menter that builds a parse tree and instruments certain nodes
in the tree with the mutate method.

1. class C {
2. ...
3. public Bar m (Foo f) {
4. ...
5. Bar b;
6. ...
7. return b;
8. }
9. ...
10. }

Figure 2. Mutation of Return Statement

The details of the ObjectMutationEngine are described in
Section 4.

3.1. Default mutators

For an instance of an arbitrary user-defined type we look
at the fields of the object. The Java reflection API enables
us to identify the types of objects. This applies to public,
private and protected fields. If the field is a scalar,
we apply the traditional scalar mutators as follows:

1. Increment the value by 1
2. Decrement the value by 1
3. Set the value to a constant

For fields that are objects we use our new mutators. If
we know the semantics of the objects, it is easier to se-
lect the mutators. In case we do not know the seman-
tics, certain default mutators can be applied. A default mu-
tator could be one that makes an object reference null.
This mutation may not be useful as it will probably raise a
NullPointerException. Moreover this is an opera-
tion that is applied to the reference, not the object. This mu-
tation treats a variable that refers to an object as having an
underlying type of “reference to object” and takes advantage
of knowledge of the semantics of variables of this sort. All
that it can do with a variable that is an object reference is take
its value, assign it a value, test for equality between two such

variables (i.e. do they refer to the same object), and derefer-
ence its value (i.e. using the member access operator).

Another mutator for arbitrary object types is one that re-
cursively applies mutators to the nested fields until the scalar
fields are reached. The following mutators can also be ap-
plied:

1. Cloning the object referred to by the variable and as-
signing the reference to the clone to the variable. For a
testing perspective, this would test the sensitivity of a
program to the identity of an object as opposed to the
state of the object.

2. Creating a new object whose type is compatible with
the declared type � of the object reference. In other
words, we can instantiate a new object whose type is a
descendant � of � . Options here would be to have the
state variables common to both � and � be the same.
That is, the two objects would be the same with respect
to their common ancestors. They could be the same
from either an equality perspective (i.e. shallow copy),
or from the perspective of equivalency (i.e. deep copy).

3.2. Mutators for containers

Java provides several container interfaces, such as
Collections and Iterators. Classes that implement
these interfaces are also provided as part of the API. We
identify mutators for these interfaces and classes using their
semantics.

3.2.1 Mutators for the Collection interface

The following mutators are implemented for the
Collection interface.

1. Make the Collection empty:

In Java every Collection needs to implement the
method clear(). The mutate method for making the
Collection empty would just invoke the clear()
method on this object. This mutator models errors re-
lated to inserting elements in an unintended collection,
or accidental removal of elements from a collection.

2. Remove an element from the Collection:

The element to be removed from the Collection
could be the first, last or some random element. Ev-
ery Collection provides a remove()method that
takes an object as a parameter. We can select the
first, last or random object by using the toArray()
method on the Collection and getting an array of
Objects. We can index this array and select any object
to be removed. This mutator models errors that occur
because the programmer forgot to put an element inside
the collection (may be an off-by-one error).
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3. Add an element to the Collection:

We can add some arbitrary element to the
Collection using the add() method provided in
any Collection. This element could be a clone
of some existing element. Alternatively, the element
constructor that takes no parameters or the default
constructor of the element, if available, can be used to
create a new element. This mutator models redundant
additions of elements into a collection.

4. Mutate the elements:

For every element inside the Collection, the mu-
tate method for the element’s type can be invoked. This
mutator is used to recursively apply mutation to ob-
jects.

5. Reorder � of the � elements in the Collection:

A collection may be implemented using a class that
makes use of ordering. This mutator models errors that
may be made in the ordering. Since there is no no-
tion of order embodied in a Collection, and there
is no method provided in the API that can manipulate
the order, we cannot apply the r

¯
eorder mutator to the

Collection interface directly. We can still use the
method toArray() to obtain an array of the objects,
reorder the array and create a new Collection from
the objects in the array.

3.2.2 Mutators for the Iterator interface

The Iterator interface provided in the Java API allows
one to obtain the next element in the iteration using the
method next(). We define a skip mutator that makes the
iterator skip elements. The skip mutator is implemented by
a mutate method that calls the next() method one or
more times.

This mutator does not affect all instances of the mutated
type but just the instance held by some client. Since we are
only mutating one iterator and not the original container, any
other client using the container or a different iterator over the
container will not see a difference. This mutator is similar
to the Remove element mutator except that it must be de-
tected by testing code that deals with the iterator and not the
collection itself.

3.2.3 Mutators for List and Vector

The mutators defined for the Collection and
Iterator interfaces apply to the List interface as
well. The faults they model are similar as well. In ad-
dition, the Collections class provides a number of
static methods, such as shuffle(List list) and
shuffle(List list, Random rnd) that can be
used to reorder the elements in the List.

The specific semantics of implementations can be used
to mutate container objects. For example, a binary tree has
a notion of ordering. This notion can be used to implement a
reorder mutator. The following mutators are implemented
for List and Vector:

1. Randomly reorder the elements in the List.
2. Delete the first/last/any element from the List.
3. Delete the first/last/any element from the Vector.

3.3. Mutators for map

The following mutators are implemented for Map.

1. Delete the first mapping.
2. Delete the last mapping.
3. Empty the map.

3.4. Mutators for inputstreams

The InputStream abstract class in the Java API pro-
vides a method called skip(long n) which skips over
and discards n bytes of data from this input stream. We de-
fine a mutator for inputstreams that results in the skipping
of bytes of data. This mutate method will call the skip()
method with an appropriate length parameter.

3.5. Mutators for user-defined classes

We implemented mutators for two user-defined classes
Region and GraphEdge that were written for two appli-
cations, (1) Paint and (2) GraphPath respectively.

The mutators for Paint are:

1. Increment by one the height of a parent.
2. Increment by one the width of a region.
3. Increment by one the width and height of a region.

The mutator for GraphPath is:

1. Increment by one the number of graph edges.

4. Architecture of Mutation Engine

The abstract components of the Object Mutation Engine
(OME) architecture are depicted in Figure 3. The parallel-
ograms represent separate threads of control, the rectangles
represent sequential processes that are executed by a thread,
and the circles represent data. The dashed directed line seg-
ments between the threads or sequential processes represent
control flow. The solid line segments superimposed with a
circle represent both control flow and specific types of data
flow. This architecture is realized by a Java implementation
that provides abstractions and concrete types for each archi-
tectural component.
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Figure 3. Architecture of the Object Mutation Engine

As the threads depicted by Figure 3 suggest, the OME is a
concurrent system following a master-slave model of com-
putation. It is envisaged that the OME will ultimately be-
come a distributed system whereby individual tests will be
parceled out to different nodes of a network. The objective
is to reduce the amount of time required to conduct muta-
tion testing, thereby overcoming one of its perceived weak-
nesses.

4.1 Execution of the OME

The execution of a single test within the OME begins
when the OME Executor reads a test configuration. A test
configuration contains parameters that describe the charac-
teristics of the Class Under Test (CUT). This includes the
fully qualified name of the CUT, the fully qualified name of
the test driver to use, the number of locations within the CUT
where a mutation operation will be applied, and the set of
mutation operators that will be applied.

Upon reading a test configuration, the OME Executor
creates a new Test Manager that will configure and run the
test. The Test Manager runs on its own thread of execution.
When created, it first establishes the environmental condi-
tions necessary to execute the test. This includes loading
the mutation operators that will be used during the test, and
loading the State Inspector that will be used to capture state
of the CUT and other objects. The Test Manager then loads

the Test Driver that is specific to the CUT and that will exe-
cute the actual test.

When executed, the Test Driver performs initializations
that are specific to the test and to the CUT. For example,
this might include initializing database connections, staging
test data, and so on. After completing initialization, the Test
Driver creates the instance of the CUT that will be tested,
and then executes the test. This is accomplished by making
calls into the CUT instance that are necessary to carry out the
test. Upon conclusion of the test, the Test Driver performs
any cleanup actions necessary and then terminates, returning
control to the Test Manager. The Test Manager then signals
completion of the test back to the OME Executor and then
terminates.

4.2 Variation within the testing process

One of the key objectives of the OME is to provide a gen-
eral purpose framework that can support mutation testing
of object-oriented programs. To accomplish this, the OME
takes into consideration the variation that must necessarily
occur due to syntactic and semantic differences in classes.
There are five areas in which this variation may occur:

1. Variation in the class C that is the subject of the test:
C is referred to generically as the Class Under Test
(CUT). The syntactic interface of C and C’s behavior
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are unpredictable. Consequently, it is not possible to
write a generic framework that can make any assump-
tions about the actual classes that will be tested.

2. Variation in the driver that executes C under the con-
ditions of a test: Because of difficulties in (1), it is not
possible to write a generic test driver that can establish
the conditions necessary to execute a test of C.

3. Variation in the operators that are used to mutate the
state of objects that occur during the course of a test:
This too is a consequence of (1). Because the seman-
tics of C can specify any behavior, the operations used
to mutate instances of C cannot be predicted. Thus,
it is not possible to automatically generate mutations
without prior knowledge of the required operations and
their semantics.

4. Variation in the mechanism that is used to capture the
state of C and related objects: C is a user-defined type
and has a concrete representation that is the foundation
of its implementation. Part of this representation will
likely include instances of other types, some of which
will be scalars (e.g. integers and floating point num-
bers). and others will also be user-defined types. Be-
cause of the wide variation of types available for use,
it is not possible to know in the general case the form
in which to capture the internal state of C. For scalar
types, a string representation is straightforward, but not

for user-defined types. For example, what should the
form be that is used to capture the value (state) of an
instance of a carburetor?

5. Variation in the mechanism that collects the output pro-
duced by C during the execution of a test: Ultimately,
programs are written for the output that results from
their computation. This output has the potential to take
an infinite number of representations. In the simplest
case, the output can simply be text written to a console.
In more complicated cases, the output could be some-
thing in the file system, such as the creation of a new file
or modification to an existing file. More complicated
cases include modifications to relational databases, or
output to a graphical user interface.

The OME accounts for the variation described using
mechanisms that isolate and abstract away the physical de-
tails of any particular C. The following subsections describe
each of these mechanisms and the other components of the
OME in detail.

4.3 Components of the OME

As noted at the beginning of section 4, the OME is im-
plemented using the Java programming language. Figure 4
depicts a UML class diagram that illustrates a portion of the
static structure of the OME’s implementation. In particu-
lar, the diagram shows the key abstractions that comprise the
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implementation, and their relationships. The following sub-
sections describe each of these abstractions in detail.

4.3.1 OME Executor

As depicted in Figure 3, the OME Executor plays the role of
a master process that controls the execution of tests. Within
the implementation of the OME, it is represented by the class
OMEExecutor, as shown in Figure 4. The primary respon-
sibility of this class is the loading of test configurations and
creating corresponding test jobs that will manage the testing
activities. To accomplish this, the OMEExecutor creates an
instance of TestManager (section 4.3.2) and delegates to it
the responsibility for overseeing the execution of a particu-
lar test job.

The OMEExecutor also is responsible for initiating one
or more processes that will provide a testing oracle func-
tion. This is done by creating instances of TestEvaluator,
each running on separate threads of control. Upon comple-
tion of a test job, the OMEExecutor assigns the responsibil-
ity for evaluating the results of the testing activities to an in-
stance of TestEvaluator.

4.3.2 Test Manager

As described in section 4.3.1, instances of TestManager
oversee the activities associated with a particular test job. A
test harness establishes any necessary environmental condi-
tions required to support a test, loading the proper instance
T of TestDriver associated with the CUT, providing a mech-
anism for collecting test results (ResultCollector), and mak-
ing the mechanisms for state inspection (Inspector) and the
rendering of results (ResultsWriter) available to T.

Instances of TestManager must also know which muta-
tion operators will be applied during a particular test along
with the number of times each mutation operator must be ap-
plied (i.e. the number of locations within the CUT). This in-
formation is passed from OMEExecutor as part of the test
configuration.

4.3.3 State Inspectors and Results Collection

One of the general problems with testing is that of cap-
turing the results that must be used to determine the out-
come. This problem is worse for OO software due to the
decreased observability that results from encapsulation in-
formation hiding [19]. A complicating aspect of this prob-
lem is that output can occur in many forms, such as di-
rect console output, changes to a local file system (e.g.
creating/updating/deleting files and directories), updates to
databases. In general, there is a plethora of different mech-
anisms that can produce output. Thus, it is not possible
to write a general purpose mechanism that can capture all
forms of output.

To overcome part of these problems (at least for software
written in Java), the OME has a family of mechanisms that
examine the state of arbitrary types of objects. This family is
defined by the class Inspector shown in Figure 4. Each class
in this family is capable of inspecting the state of a specific
type of object. For example, the OME includes the class De-
faultInspector that provides the capability of inspecting the
state of instances of the most general type java.lang.Object.

When a field f is inspected, the type of the object bound
to f is used to determine the specific kind of inspector to
use. Thus, each type of inspector is written to inspect the
state of a specific type of object (referred to as the inspector’s
characteristic type). The inspector that is selected is the one
whose characteristic type is the closest in an inheritance hi-
erarchy to the type of the instance bound to the field. Thus,
a given inspector may be applicable to a number of differ-
ent types of objects (specifically those that are instances of
descendants of the inspector’s characteristic type).

If the type of a particular field f in an object being in-
spected does not match an existing inspector, an instance of
DefaultInspector is used to capture f ’s value. If f is of a type
unknown to DefaultInspector, its value is rendered using the
toString provided by the class java.lang.Object (this class is
the parent of all other user-defined types in Java). The OME
also includes a predefined class StringInspector that is used
to capture the state of instances of this type.

Instances of Inspector populate an instance of ResultCol-
lector with the values of the state variables of an arbitrary
object o. The Java Reflection API is used to gain access to
o to query its individual fields for their values. These val-
ues are rendered as strings and stored as key/value pairs in
an instance of ResultCollector. Ambiguities are avoided by
having the keys structured as stylized names that include
the fully qualified names of the state variables contained in
the definition of the actual type of the object bound to o.
The keys also embed the type of the field, as illustrated by:
java.lang.System.out[java.io.PrintStream]

Inspectors are used during the testing process by calls
embedded in the CUT at locations where the recording of
intermediate and final state is required. Typically, the latter
will be performed just prior to where control returns from a
method that is executed as part of the test.

For capturing other forms of output, specialized types of
ResultCollector can be written that know how to capture the
various forms of output that a given CUT produces. The
details of this vary widely from one CUT to the next. The
default ResultCollector within the OME has the capability
of capturing I/O written to the standard output and standard
error devices. This information is buffered in the local file
system until the final results of the test are rendered (section
4.3.4).
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4.3.4 Results Rendering

Results may be rendered from a given test in a number of dif-
ferent ways. The mechanism (ResultsWriter) employed by
the OME allows the definition of custom mechanisms that
can render test results in any arbitrary form. By default, re-
sults are rendered as simple textual representations of the
key/value pairs contained in an instance of ResultCollector.
The OME also includes a specialized ResultCollector that
renders test results and capture output as an XML document.
This is then used by the TestEvaluator to determine the test
outcome.

4.3.5 Test Drivers

Each CUT C represents a type defined by a distinct syntac-
tic unit that has a unique semantics. A consequence of this
is that writing a general purpose test driver that can be ap-
plied to any C is impractical. Such a test driver D would be
required to have the capability to establish the environmen-
tal conditions for any C, and be able to create instances of C
for testing. Given that the set of all C is potentially infinite,
writing D would not be possible.

Recognizing that all test drivers can be considered the
same from a very abstract perspective, it is possible to define
a common interface and associated behaviors that each D
would possess. For example, each driver must initialize en-
vironmental conditions, load test data, execute one or more
tests, and record results. While the specifics of these activi-
ties are likely to be different for any two test drivers, all test
drivers can be assumed to have these activities and execute
them in the same order. This assumption underlies our Test-
Driver abstraction contained within the OME which utilizes
a Template Method design pattern [9] to define the algorithm
for executing a test that all test drivers use. Essentially, this
algorithm consists of steps that first perform whatever ac-
tions are necessary to setup for a test, runs the test, cleans up,
and finally records results. Each step is delegated to an ab-
stract method that each concrete test driver must implement.
Thus, generality in the test driver is achieved by taking ad-
vantage of inheritance.

Each concrete test driver has several responsibilities
within the OME that must be satisfied. The driver must
know how to create the environmental conditions necessary
to execute its associated test. This could include creating
files, database connections, and so on. The driver must also
know where to get its test data from. This could, for exam-
ple, be defined within the driver itself, or could exist in a file
or external database. Perhaps the most important responsi-
bility the driver has is in creating the instance of the CUT
that will be used as the test subject.

4.3.6 Mutation Operators

The source code of the CUT is instrumented with calls to
mutation operators (and to the instance of Inspector). Calls
to mutation operators are inserted within the methods of the
CUT at locations that involve objects that are of interest
from a testing perspective. Typically, these will be immedi-
ately before or after locations that have calls to methods or
statements that reference the state of a particular object in
some manner. The particular mutation operator used is de-
termined by the declared type of the object reference used at
a particular location of interest. The basic idea is to create
a special mutator class for each type or family of types that
need to be mutated. These mutator classes implement a mu-
tate method to support fault models relevant to a particular
type — interface or class — and make use of the underlying
semantics of the type.

Each mutation operator is implemented as a class that is
a descendant of the Mutator class, shown in Figure 4. This
class specifies the method mutate that takes a reference to
an instance of java.lang.Object. The characteristic type of a
mutator is that of the actual type of the mutation candidate
(i.e. the reference that is bound to an object that will be mu-
tated). Similar to the use in inspectors (section 4.3.3), the
characteristic type is used to identify the types of object that
the mutation operator is compatible with. Thus, generality
for mutation is achieved by allowing the definition of cus-
tom operations that are specific to particular types.

4.3.7 Test Evaluation

Once a test is complete, as described in section 4.3.1, the
OMEExecutor calls on an instance of TestEvaluator to deter-
mine the outcome of a particular test. TestEvaluator, shown
in Figure 4, is an abstract class that defines a set of com-
mon behaviors and interfaces. This allows for the definition
of custom test evaluation mechanisms. This is necessary to
achieve generality since the differences in test results and
output will have a high degree of variation.

5. Demonstration of OME

We used the OME to mutate a selection of Java programs.
The applied mutations include a set of mutators designed to
mutate both standard Java library objects and custom mu-
tators that can inject faults into user defined class objects.
Only a small set of mutators were implemented for this ini-
tial demonstration of the OME. The standard library muta-
tors include the following:

� in ome.mutators.java.util:

– CollectionMutator: seven mutate methods delete
or add an object from or to a Collection, or change
the order of the objects in a Collection.
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Table 1. Applying the OME to five example programs.
Number of Num Actual Number of Number of
Potential Mutated Mutators Number of Number of Mutants

Program Locations Locations Per Location Tests Mutants Killed
Ant 21,065 16 1–7 2 53 28
Junit 1,478 4 6 1 24 16
GraphPath 142 6 1–7 8 21 10
Paint 323 4 3 13 12 8
MazeGame 1,624 6 3 6 18 12

– ListMutator: two mutators — one deletes the last
element in a List, the other changes the order of
List elements.

– VectorMutator: deletes the last object in a Vector.

– MapMutator: three mutators — one deletes the
first element, one deletes the last element, and one
makes a Map empty.

– IteratorMutator: skips the next object.

� in ome.mutators.java.io:

– InputStreamMutator: skips a random number of
bytes in an input stream.

We applied the library mutations and some custom mu-
tations to classes in a selection of Java programs including
open source programs and programs used for classroom ex-
amples and assignments:

� Ant: a build tool from Apache. We mutated class
org.apache.tools.ant.Project in version 1.4.1 of jakarta-
ant. Three library mutators were applied: Collection-
Mutator, MapMutator, and InputStreamMutator.

� Junit: a unit testing framework written by E.
Gamma and K. Beck. We mutated class ju-
nit.framework.TestSuite in Junit 3.7. Collection-
Mutator was applied.

� GraphPath: finds the shortest path and distance be-
tween specified nodes in a directed graph using Dijk-
stra’s shortest path algorithm. CollectionMutator, It-
eratorMutator, and InputStreamMutator were applied.
In addition, a custom mutator modified the length of a
graph edge by one.

� Paint: calculates the amount of paint needed to paint a
house. This program is adapted from a text by Lambert
and Osborne [16]. A custom mutator modifies a paint-
ing region by adding one to the height and/or width.

� MazeGame: a game that involves finding and rescuing
a hostage in a maze. This was a development assign-
ment in a software engineering course. MapMutator
was applied.

Table 1 shows the number of locations that were mutated
and the number of mutators that were generated for each
program. Only half of the 128 mutant programs were killed
by our test data. We do not claim that our test data was com-
prehensive — we did not generate a large number of test
cases. However, only a few test cases were needed to kill
half of the mutants. It is also clear that the mutations rep-
resent plausible errors — the mutants had some chance of
surviving the testing process, since half of the mutants re-
mained alive.

This demonstration represents only a small fraction of all
possible mutations for the selected programs. We mutated
only a few locations in one class for each program. This is
especially obvious in Ant where we mutated only 16 out of
21,065 possible locations, where each possible location is
where a method is called. We leave the problem of how to
optimally select locations to mutate as future work. Our ob-
jective here is to demonstrate that our methods for mutating
objects can be applied to real programs.

6. Conclusions and Future Work

We described a technique for performing mutation anal-
ysis on object-oriented programs by injecting faults into ob-
jects. Our techniques make mutation work for OO software.

We showed that reusable libraries of mutation compo-
nents can effectively inject plausible faults into objects that
instantiate items from common Java libraries as well as user
defined classes. Since Java library items are heavily used
in commercial software, our technique should be effective
for evaluating the real-world software testing suites. We can
also develop custom mutators for user-defined types.

We designed an object mutation engine that implements
our technique. We are now assessing the effectiveness of
this technique. The design of the Object Mutation En-
gine is flexible. It can inject a wide variety of mutations
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into running programs, and can be extended to support new
fault models. With our techniques and tools, mutation of
component-based systems is also possible.

Our next task is to experimentally evaluate the object mu-
tation technique. We are investigating the cost of using the
mutation framework and the gains of using our mutation
technique. From these experiments we will have a better un-
derstanding of several issues — scalability, relative fault de-
tection capabilities of test suites created using different sets
of mutators, and the adaptability of the mutation framework
to different application types. We will also be able to de-
velop a set of guidelines that will aid the tester in using the
object mutation technique on a particular application.
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