Microcomputer Applications, Vol. 9, No. 3, 13990.

A TOOL FOR ESTIMATING
SOFTWARE TESTING REQUIREMENTS

James M. Bieman(*)

Abstract

We describe a prototype sofiware tool that estimates the number
of test cases required to apply particular iesting stralegies
to program subroutines. The tool was used to evaluate the
practicability of data flow testing of a commercial text analysis
system which runs on microcomputers. Qur system was developed
It is
easily adaptable and can be used to cvaluate proposed testing

from formal specifications and is implemented in Prolog.

techniques, estimate the resources required to test a sofiware
system, and identify hard-to-test subroutines. The testing effort
estimating tool is one component of a software analysis research
environment.

Key Words

Software tools, software testing, sofiware mecasures, program

analysis.
1. Introduction

The size of available microcomputer random access and
disc memory and the speed of microcomputer proces-
sors have been increasing, while microcomputer prices
have dropped. As capacity increases, the demands on
microcomputer software in terms of functionality, size,
and complexity also increase. Microcomputer soltware
vendors are discovering that developing large software
systems is much more difficult than developing systems
for the limited microcomputers of the past. Develop-
ment schedules are hard to keep, partially because testing
takes an unexpected amount of time. Finally, systems
are delivered with more bugs than vendors are willing to
admit.

Such development problems were discovered years
ago by the developers of software for main frame com-
puters {I]. Today, microcomputers actually have the
capacity, in both memory size and processing speed, of
many of the main frame computers of the 1970’s. Fur-
thermore, the demand for easy to use software that can
perform complex tasks is even higher for today’s micro-
computers. A microcomputer user has direct access to a
machine and does not have the support of a data pro-
cessing department to write specialized software. As a
resull, microcomputer software must have excellent user
interfaces and must be usable by non-technical people.
(*) Department of Computer Science, Colorado State University,

Fort Collins, Colorade 80523 USA
(paper no. 807-478)

72

The added demands on microcomputer software means
that the software must be very complex.

Software with increased complexity is much more
difficult to test. Predicting when software will be ready
for delivery is also a serious problem. The unpredictable
duration of testing has become a major component of
this uncertainty. Thus, we must develop techniques to
assist software engineers in estimating the eflort required
to test a system and to identify hard-to-test soltware
components. One common test strategy is to look at
the structure of a program to determine Lest cases. A
software system is not completely tested until the tests
have touched every statement, branch, data interaction,
or some other structural criterion. Qur aim is to develop
tools and techniques to support the analysis of program
structure for use in software testing.

In this research, our goal is to develop prototype
tools that estimate the required number of test cases
necessary to apply particular structural testing sirategies.
In previous research, Tai, Weyuker, Ntafos, and Laski use
a worst case analysis as a measure of the required number
of test cases [2-5). Our aim is to directly estimate the
number of test cases required for a specific program to
be tested to satisfy a particular criterion. Only through
empirical studies can we determine whether the worst
case analyses are overly pessimistic.

As data for our study, we use an actual software
system currently being used commercially on microcom-
puters. The system that we study is a natural language
text analysis system (NLTAS). The NLTAS is a product
of Iris Systems Inc. and is used commercially for market
research. The NLTAS is written in Pascal and runs on
microcompulers (PC-compatibles).

In work related to ours, Frankl and Weyuker de-
veloped a system, ASSET, which determines whether a
given set of test runs satisfies testing criteria and indi-
cates those portions of the program that are still untested
[6,7). This information can then be used to strengthen
the test data. ASSET is designed for use on a specific
subset of Pascal.

Rather than monitor an ongoing testing process, our
aim is to develop tools to estimate the number of tests
required by testing criteria. We also seek to develop
tools which operate on full Pascal and are easily adapted
to other languages. The tool described in this paper
can determine the approximate number of test cases
necessary to apply data flow testing strategies. It was
used in an empirical study of the NLTAS microcomputer
system.

Testing strategies, testing criteria, and the data flow
criteria which our tool currently supports are described

in Section 2, Section 3 describes the software analysis
research environment where our tool resides. The design

of the testing tool is described in Section 4. Section
5 describes how our tools are used and summarizes the
results from applying it to the NLTAS. Conclusions and
plans for the future appear in Section 6.

2, Structural Testing Strategies
2.1 Common Testing Criteria

Generally, structural testing strategies use structural
testing criteria to select program paths to be tested.
Testing criteria aid in selecting the smallest set of test
cascs that will uncover as many errors as possible.
Structural testing criteria use the flow of control and/for
the flow of data to determine portions of a program that
need to be tested.

Common criteria based on the flow of control include
the all statements, all branches, and all paihs criteria.
The all statements criterion requires that all program
statements be executed during testing, and the all
branches criterion requires that all control flow branches
be tested. Branch testing is considered a minimum
control flow coverage requirement and is described in
[8-10].

Other criteria are based on the flow of data through
a program [11-14]. These data flow criteria suggest the
testing of specific sets of paths that follow the flow
of data from expressions through assignments io other
expressions. In general, data flow criteria tend to be
more clfective in uncovering errors Lhan criteria based
solely on control flow [15].

The most discriminating path-based testing crilerion
is the all paths criterion, which requires testing all possi-
ble program paths. Unfortunately, the all paths criterion
requires an infinite number of test cases in programs
with loops. Path-based testing crileria are generally used
for unit testing. The criteria help determine the level of
coverage of individual procedures or functions.

2.2 Data Flow Testing Criteria

The data flow criteria of Rapps and Weyuker [14]
focus on the program paths that connect the definitions
and uscs of variables (du-paths). A variable definition
iIs a statement or expression that clianges the value
of the memory localion referenced by a variable. A
definition may occur via an assignment statement, a
procedure invocation, or a [unction invocation which
has a side effect. A variable use is a siatement or
expression that references or uses the value stored for
a particular variable. Rapps and Weyuker distinguish
between variable uses within computations (c-uses) and
uses within predicates or decisions (p-uses). Thus a
variable used in the right-hand-side of an assignment is
considered a c-use, while a variable used in the boolean
expression controlling a while loop is a p-use.

73

Often, errors in variable definitions are not uncovered
until the variable is referenced at a distant point in the
program. Data flow criteria allow the tester to determine
the extent to which the paths from variable definilions
to variable uses have been tested.

We use the example Pascal binary search procedure
from Dromley [16] shown in Figure 1 to demonstrate
the definition-use testing criteria. The binary search
procedure determines whether or not a particular integer
value (parameter x) is stored in an array (array a). We
use an individual procedure to demonstrate definition-use
criteria since they are unit test criteria — they are
designed for testing individual procedures or [unctions.

procedure binarysearch (a: nelements;
n,x: integer;
var found: boolean);
var lower, upper, middle: integer;
begin
lower := 1;
upper := n;
while lower < upper do
begin
middle := (lower + upper) div 2;
if x > a[middle]
then lower := middle + 1
clse upper ;= middle
end;
found := (aflower]=x)
end;

Figure 1. Pascal binary search procedure.

A flowgraph is constructed from the source code
of the procedure where the nodes represent straighi
line code (basic blocks) and the edges represent control
choices. The binary scarch procedure has the flowgraph
shown in Figure 2. The variables defined and referenced
in each program basic block are represented by flowgraph
nodes and are shown in Table 1. We distinguish belween
c-uses and p-uses because p-uses are associated with the
out-edges from predicate nodes rather than the nodes
themselves.

Bhoek | Conde € st s definitions
[Wnput pasatclees a, w, %3 anx,
1 lower 1= 1 n Iower,
Hpr IS g npper
2 while lowes < upper de limes, npper
3 mitldle i= {lower + upper) div 2 | lower, spper | x, a, widdle [midille
il x > a[middle|
4 then lowers := middle 4 1 middle lowes
5 clse upper := middle middle upper
6 | found := (aflawer|=1) &, Jowee, 8 found
t
Table 1. Binary search basic blocks, definitions, and
uses,

The all-du-paths criterion requires testing all of
the cycle-frec paths between variable definitions and
references. The all-uses criterion requires the testing of

—©—O—O

e

o

Figure 2. Binary search flowgraph.

/@

&—

at least one du-path (il one exists) between every node
pair. All of the du-paths in the binary search procedure
are shown in Table 2.

DU Patls
{s:1}
(s,1,2,3,4)
(5,1,2,3,5)
(s,1,2,6)
(1,2,3)
(1.2,6)
(3,4)
(3,5)
(412’3)
(4,2,6)
(5,2,3)
(5,2,6)

Table 2. Binary search definition/use paths.

Branch coverage is probably the most commonly
used testing criterion in industry. The branch coverage
criterion requires the testing of each edge at least once; it
does not require the testing of particular paths containing
more than one edge. Also, it does not require the testing
of any edge more than once. Testing all of the du-
paths requires that each branch within the while Joop
be executed as the last iteration (du-paths (4,2,6) and
(5,2,6)) and as a non-last iteration (du-paths (4,2,3) and
(5,2,3}). Du-path testing is more likely than branch
testing to reveal errors that only occur when these
particular paths are executed.

74

Qur tool can identify the du-paths and estimate the
number of test cases required to test these paths.

3. Software Analysis Research Environment

We are currently developing a software analysis research
laboratory. The Software Analysis Laboratory is a center
for the analysis of software documents. Requirements,
specifications, designs, implementations, testing strate-
gies, and the relationships between software documents

are included in the research of the Software Analysis
Laboratory. Research in the Software Analysis Labora-

tory has a firm basis in formal specifications: all tools
and techniques are formally specified to make our results
unambiguous and to allow others to repeat the research.
The results reported in this paper are from the investi-
gation of techniques for estimating the effort required to
apply particular testing stralegies.

To allow us to formally specify our measurement
tools in a language independent fashion, we have de-
veloped a formal representation of imperative language
programs, or the standard representation (Standard Rep)
[17]. Imperative or procedural languages such as Fortran,
Pascal, C, Cobol, or assembler can be easily modeled by
the Standard Rep. The Standard Rep is not appropri-
ate for modeling non-procedural languages such as Lisp
or Prolog. The Standard Rep models a program as an
annotated flow-graph (or flow chart) where basic blocks
(straight-line code) are represented as flow-graph nodes
and control branches are represented as flow-graph edges.
Nodes are annotated with information concerning the
variables whose values are changed or referenced within
the basic block represenied by a node. The Standard
Rep is designed to hide proprietary information to allow
us casier access to commercial software for our research.
The Standard Rep and our test path measurement tools
are specified in the SPECS specification language [18-20].

The Standard Rep is the basis for our software
analysis research environment. We can convert Pascal
programs into a Standard Rep using a translator imple-
mented by Doh {21]. The information needed for our
testing criteria research is extracted from the Standard
Rep and stored in a Prolog data base (PDB). The test
path analysis tools are implemented in Prolog and op-
erate on the PDB. The overall design of our software
analysis research environment is illustrated in Figure 3.
This paper focuses on the Prolog Data Base and “Data
Flow Testing Effort Estimators” component of Figure 3.
The solid lines in Figure 3 represent software tools that
are currently implemented and used in our research. The
dashed lines represent planned software tools. A transla-
tor that converts C programs into the Standard Rep has
been designed and is currently being implemented. The
testing analysis tool described in this paper makes use
of PDB’s produced by the tools in our research environ-
ment. Since the testing tool uses programs in Standard
Rep form, as soon as we have a translator that creates
a Standard Rep from a particular language, our tools
will be effective on programs in the new language. Thus,
when the C to Standard Rep translator implementation

is completed, we can immediately use our testing effort
estimation tool on software implemented in C.

Pascal —
Prolog bata Flow
c - Data Base e TEG::!.::S
------ o
(FOE) Estimators
StandardRep
Cobol ~===-=+
e Other tools

and measures

Figure 3. Software analysis research environment.

4. Tool Design
4.1 Implementation Language & Environment

The prototype software Llesting effort estimator tools
were implemented in c-prolog. C-prolog was developed
at the University of Edinburgh, and has a standard
Prolog syntax without extensions. These programs were
implemented without any machine dependent code, and
shonld run on any machine with a Prolog interpreter or
compiler. Qur first implementation was on a DEC VAX
11/780 running Berkely UNIX. We porled Lhe software
to Sun 3/50 workstations and TP 9000/350 systems
without any modifications. We anticipate no problems in
running our software on any 386 based PC with at least
I MByte of random access memory. Complete Prolog
source listings are available in a technical report [22].

4.2 A Prolog Representation of Programs

The input to the software testing cffort estimator is a
Prolog representation of the control and data flow of Pas-
cal procedures. This Prolog representation is extracted
from the standard representation of Pascal programs
(Standard Rep). The Standard Rep is generated by tools
in the Softwarc Analysis Research Environment described
in Section 3.

The Prolog representation is a Prolog data hase
(PDB) which contains the control flow information and
data flow information necessary Lto identify the du-paths.
A PDDB is ecssentially an annotated flow graph in a
form easily digested by Prolog programs — Prolog rules.
Figure 4 shows Lhe PDDB for the binary search example.
The contents and structure of the PDDB in Figure 4
match the information in Table 1. The PDB also
includes the control flow information, which consists of
Prolog rules representing control flow edges. Since the
PDB is referenced by Prolog programs, Prolog syntax is
used. Thus, the path (2,3,4) is represented by Prolog
lists as [2,3,4]. In describing the estimation algorithm,

Prolog syntax will be used for such lists or paths.

nodes((s,1,2,3,4,5,6]).

global_defs(s,[a,n,x]).
global_c_uses(s,[]).
p-usaes(s,(1).

global_defs(1,(lower,upper]).
global_c_uses(1,[n]).
p-uses(1,[1).

global_defs(2,[]).
global_c_uses(2,[1).
p-uses(2, [lover,upper]).

global_defs(3, [middle]).
global_c_uses(3, [lower,upper]).
p.uses(3, [x,a,middle]).

global_defs(4, [lower]).
global_c_uses(4, [middle]).
p-uses(4,[]).

global_defs(5, [upper]).
global_c_uses(5, [middle]).
p-uses(5,[1).

global_defs(6, [found]).
global_c_uses(6,[a,lower,x]).
p-uses(6,[]).

edge(s,1).
edge(1,2).
edge(2,3).
edge(3,4).
edge(3,5).
edge(4,2).
edge(5,2).
edge(2,6).

Figure 4. PDB for binary search procedure.

75

4.3 Estimation Algorithm

The testing effort estimation is performed in three steps:

1. The du-paths are identified.

2. Redundant du-paths are eliminated.

3. A set of complete paths (paths from the start to the
end of a program which cover all of the du-paths) is
identified.

The size of the set of complete paths produced in step
3 is an estimate of the fewest number of complete paths
that include all of the du-paths.

Searching for Du-paths

Each ordered pair (z,y) of flow graph nodes is examined.
If there are variables which are defined in node z
and referenced in node y, then a depth first search is
performed seeking all cycle-free paths from z to y. For
a path to be included, at least one variable defined in x
must not be redefined in any node on the path. Figure
5 outlines the algorithm used to find the du-paths. This
figure is an attempt to describe a Prolog algorithm in
a procedural fashion. Unfortunately, Prolog backtracking
makes this presentation somewhat awkward. Prolog
normally uses a depth first search approach, and Prolog
backtracking allows us to try different sub-paths when
the current one reaches a dead end. To find all du-paths
the Prolog rule FAIL is used to force backtracking after
finding one du-path for a particular node pair. This
allows us to find more than one path connecting two
nodes.

DUP := {}:
For each pair (x,y) of flowgraph nodes:
CVARS:=got of variables defined in x
and used in a computation in y
PVARS:sset of variables daefined in x
and usad in & decision in y
if CVARS & PVARS are empty then
no du-patha between x and y
else
SP := (x); {Search Path}
Repeat until no more paths to find
Repeat and Backtrack until CVARS={} and PVARS={}
or tail({SP)ay
Find an immediate successor node 2
to tail(sSP)
(z must not have been tried before
or be on the current SP)
VZ := {variables defined in z}
CYARS := CVARS - VZ
PYARS := PVARS - VZ
if CVARS<>{} and PVARS<{}
then 1. SP := SPf(z
2. if z=y then DUP = DUP U {SP}

Figure 5. Algorithm for finding du-paths.

The following is the du-paths in the binary search
procedure example in Prolog form:

du_paths([[s,1],
[s,1,2,3,4],
(s,1,2,3,5]1,
[s,1,2,6],
[1,2,3],
[1,2,6],
[4,2,3],
{a,2,8],
[5,2,31,
[5,2,86],
0on.

Eliminaling Redundant Du-paths

76

When searching for du-paths, Prolog will often generate
duplicate and redundant paths. Duplicate paths are
clearly unnecessary. Du-paths that lie entirely on another
du-path are also redundant. Consider the du-paths
[1,2,3,4,5] and [2,3] and test cases which cause execution
to traverse the first path. The second path has also been
traversed and is redundant. The second path may be
eliminated from our set of du-paths without consequence.

The du-paths are examined and the paths that lie
on anather du-path in the list are eliminated from the
set of du-paths. After removing the redundant du-paths
for the binary search routine, the following “condensed”
(conlist) of dupaths is produced:

conlist ([[s,1,2,3,4],
[s,1,2,3,5],
[s,1,2,8],

[4,2,3],

[4,2,6],

[5,2,6],

[5,2,311).

Counting Complele Paths

The counting of complete paths uses the condensed list
of du-paths. The program overlaps and merges as many
du-paths as possible along one complete path. A counter
is incremented and each selected du-path is deleted {rom
the list of du-paths. The process is repeated until the
list of du-paths is empty.

The process begins by a search for a du-path that
begins with the start node s. Each time a du-path is
selected, it is deleted from the list of du-paths and then
a search is conducted for a du-path which begins with
the tail of the selected path. If the path [s,1,2,3,4,5]
is selected, the program then searches for a du-path
with the initial sequence of [1,2,34,5,..]. 1If such a
path is not found, the program searches for [2,3,4,5,..],
then [3,4,5,..), etc. Should the search reach [5,...], the
algorithm seeks du-paths that start with the closest
successors to node 5. If no du-paths are found after
trying all successor nodes, the count is incremented and
the search for a du-path that begins with the start node
s is repeated. The program terminates when the list of
du-paths becomes empty. Figure 6 presents the algorithm

in procedural form.
The final value of the counter may not be the

minimum number of complete paths that cover all of the
du-paths. When searching for a du-path, there may be
several du-paths with the desired initial sequence. The
program selects the first path it finds in the list, even
though one of the other choices may allow more du-paths
to be included along the complete path. Thus, the tool
computes only an estimate of the required number of
complete paths needed to meet the all-du-paths criterion.
However, the algorithm does determine the size of a set
of complete paths that covers all of the du-paths.

Initialize:
UP := set of condensed du-paths;
SP := [s]; {Search Path}
Count := 1;
While DUP is non-empty do
if SP = [N] {contains a single node}
then if there is a du-path starting
with a successor to N
then 1. choose a path P which
starts with the closest
successor;
2. DUP := DUP - {P};
3. SP := tail(p);
else 1. increment Count;
2. SP := [s];
else if there is a du-path P
such that 5P is a prefix
then 1. D := D - {P};
2. SP := tail(P);
else SP := tail(SP):
end While.

=]

Figure 6. Algorithm for counting complete paths.

4.4 Ease of Modification

The research tools are wvery easy to modify when esti-
mating the number of required tests for different tesling
strategies and when searching for paths with different
properties.

For example, only ene modification was required for
the tool to support the all-uses criterion rather than
the all-du-paths criterion. The set of Prolog clauses
that searches for all du-paths uses the clause fail to
force Prolog to search for all du-paths. The Prolog
search clauses search for all du-paths Dbetween two
nodes N1 and ¥2. The search for paths {(c_paths)
terminating in computation uses (c-uses} and paths
(p-paths) tlerminating in predicate uses (p-uses) are
performed by separate clauses. The clauses used to
search for all-du-paths include the following:

search{(., [1, [1).

search{[N1,82), C_VARS, P_.VARS) :-
c.path([¥1,§2], C.vARS, [N1]),
fail.

search([N1,N2], C.VARS, P.VARS) :-
p-path([N1,N2], P.VARS, [N1]),
fail.

search(_, _, |).

The all-uses criterion only requires that one du-path

be tested between any two nodes rather than all du-
paths. To modify the Prolog program to support the

77

all-uses criterion, the fail clauses are removed:

search(., [1, [1).

search([N1,N2], C_.VARS, P_VARS) :-
c_path([N1,N2], C.VARS, [N1]),

search([N1, N2], C_VARS, P_VARS) :-
p-path([N1,N2], P_VARS, [N1]),

search(., ., -).

In our current research, we have modified the Prolog
clauses to perform additional analyses of our data. One
of these studies involves taking complexity measures
suggested by Tai which are based on the effect of control
flow on the data flow of a program [23]. This measure
requires the introduction of the definitions and uses of a
hypothetical variable into a flowgraph representation of
a program. This variable is introduced in a manner that
maximizes the number of live definitions of the variable
which reach successive use. This measure is the sum of
the number of live definitions that reach cach use of the
hypothetical variable. We found it easy to adapt our tool
to take this measurement and perform related analysis.

A production tool would use parameters to determine
which analysis to perform. Since we are using our tool for
research and want the maximum flexibility to change our
analysis techniques, we prefer to make modifications to
the code itself. Once we are sure about the appropriate
analysis Lo use in a production tool, then such a tool with
paramcterized choices can be designed and implemented.

5. Analyzing a Microcomputer System
5.1 The NLTAS

Our tool for estimating software testing requirements
was first applied to a microcomputer system currently
used commercially. The system, a natural language text
analysis system (NLTAS), is used to analyze verbatim
responses to open ended surveys used in market research.
An expert analyst uses the system to identify, within
natural language text, the words and phrases that
correspond to a specified set of “meaning units.” The
NLTAS is 2 product of Iris Systems, Inc. and has been
in commetcial use since 1985. The system consists of
five Pascal programs with a tolal of 141 subroutines
(procedures and functions). The system has a total
of 7,413 lines of code (including comments). Thus the
average length of a subroutine is 52 lines of code. The
longest subroutine is 367 lines of code. All but ten of
the subroutines are shorter than 100 lines of code. We
generated a Standard Rep from the original source code
and performed the analysis using the Standard Rep of
the system.

5.2 Empirical Study Results

Using our estimating tool, we determined how many test
cases are aclually needed to test the NLTAS and satisly

the all-du-paths testing criterion [20,22]. The results
indicate that the criterion is much more practical than
previous analytical results have suggested.

The all-du-paths criterion is comparatively effective
in revealing errors, but it may require an enormous
number of test cases. Weyuker shows that the all-du-
paths criterion requires 2° test cases in the worst case,
where 1 is the number of conditional transfers [3).

Although the all-du-paths criterion can potentially
require an exponential number of test cases, our resulis
indicate that the worst case scenario is rare. For most of
the subroutines in the NLTAS, the all-du-paths criterion
can be satisfied by testing fewer than ten complete
paths. Only one subroutine requires the testing of an
exponential number of paths. One other subroutine
requires a comparatively large number of paths. Thus,
the all-du-paths criterion can be used to test most of the
subroutines in the software system under study.

In the two anomalous NLTAS subroutines, the
weaker all-uses criterion can be met by testing a reason-
able number of complete paths. One of these subroutines
requires testing on the order of 23° complete paths to
satisly the all-du-paths crilerion. The all-uses criterion
requires tesling a estimated 463 complete paths. The
other subroutine requires testing an estimated 10,000
complete paths to satisfly the all-du-paths criterion. Sat-
isfying the all-uses criterion for this subroutine requires
the testing of an estimated 28 complete paths. The de-
tailed results of this empirical study ate reported in [20].

Our results confirmed similar results from an em-
pirical study conducted by Weyuker [24, 25]. Weyuker
determined how many test cases were required to ap-
ply data flow testing strategies using a suite of programs
collected by Kernighan and Plauger [26]. The programs
included in Weyuker’s study were relatively small since
they were designed for publication, and the study it-
self required considerable effort by human testers. The
programs in our study are production software currently
being used commercially.

5.3 Evaluation of the Tool

We experienced some difficulties when applying our tool
to large NLTAS subroutines or NLTAS subroutines with
large numbers of du-paths. Analyzing several of these
subroutines required an hour or two of processing time
when running on a Sun 3/50 workstation. Due to the
nature of the c-prolog interpreier that we were using and
the mutually recursive nature of our programs, we ran
out of system stack space when analyzing subroutines
with large flowgraphs. Flowgraphs with greater than
approximately 30 edges caused the tool to exhaust the
systemn stack space. We were able to handle these large
subroutines after recoding portions of the Prolog code
into iterative rather than recursive algorithms.

On the anomalous subroutines with exponential
numbers of du-paths, the tool requires an exponential
amount of time and space. Obviously, the tool will not be
able to complete such computations. In testing the tool
on the NLTAS software, we found only one subroutine

78

exhibiting this anomalous behavior. This routine was
identified because of the lack of progress and vast amount
of disk space used by our tool. Currently, setting a limit
on the amount of time that the tool is allowed to run is
a pragmatic solution to the problem of identifying these
anomalous subroutines.

We found that using Prolog as a language for de-
veloping this tool was a good idea. We were able to
quickly implement the system and easily modify it to
examine different testing criteria. Qur only problems oc-
curred when using the Prolog implementation to analyze
very large subroutines. These large subroutines are the
subroutines that will be the most difficult to test. We
can easily adapt our tool to explicitly search for these
difficult-to-test subroutines.

6. Conclusions

In this paper, we described a prototype software analysis
tool. This tool analyzes the testability of program
subroutines. The measure of testability is the number of
test cases necessary to apply particular structural testing
criteria. Given a software system under development, the
tool can estimate the number of test cases required to
apply specific structural testing strategies. The tool that
we developed focuses on data flow criteria and can be
easily adapted to other kinds of testing criteria. Given
a Pascal program, our prototype tool will estimate the
number of tests required to salisly the all-du-paths or
all-uses data flow testing criteria of Rapps and Weyuker
[14]. The tool can be used to identify the subroutines
most difficult to test.

The tool is one component of a flexible software
analysis research environment. The input of our tool is 2
representation of programs. This standard representation
of Pascal programs is produced by a translator in our
environment. As we develop additional translators, we
will be able to analyze programs in other languages
without modifying the tool. The tool can be easily
adapted to support different testing criteria or other
methods of program analysis. A production quality
testing tool with improved performance could be designed
using our research tool as an executable specification.

We used this tool to analyze a commetrcial PC based
natural language text analysis system. Our analysis
suggests that data flow based testing strategies are much
more practical than previously thought.

Our contribution includes the development of tech-
niques for estimating the number of test cases required to
apply particular testing strategies. The software analysis
tool we designed applies these techniques. It can identify
the most complex subroutines that are difficult to test
using selected testing strategies. Our tool is implemented
as an executable specification in Prolog and is designed
from formal specifications. Thus, the experiments can
easily be duplicated by other researchers, and our tool
can be re-designed for production-level performance with

minimal effort.
We are currently working to improve the performance

of the tool. We want the tool to run faster and use

less memory. We are also working on ways to identify,
in polynomial time, the subroutines that require an
exponential number of test cases. We are also adapting
our tool to analyze alternative testing strategies. The
resulis from these investigations should help turn our
prototype tool into an industrial-strengih tool.

Acknowledgment

This research was partially supported by the NATO
Collaborative Research Program under RG. 0343/88.
We are grateful to Iris Systems Inc. for allowing us
to use their natural language text analysis system as data
for this case study. We acknowledge the work of Janet L.
Schultz, who implemented initial versions of Lhe testing
effort estimation software. We also appreciate the eflori
of Kyung-Goo Doh, who implemented the Standard Rep
generator. We thank both Albert Baker and Norman
Fenton for their valuable comments and suggestions.

References
[1] F.P. Brooks, The Mythical Man-Month: Essays in Software
Engineering. (Reading, MA: Addison-Wesley, 1975).

[2] K.C. Tai, “Program testing complexity and test criteria.”
IEEE Trans. Seftware Engineering (November 1080), SE-
6(6), 531-538.
E.J. Weyuker,
test dala selection.” Information Processing Letters {August
1984), (19}, 103-109.

5.C. Ntafos, “A comparison of some structural testing
strategics.” JEEE Trans. Software Engineering (June 1988),
(14), 868-874.

[5] J.W. Laski, "On the comparative analysis of some data
Technical Report 87-05, School
of Enginecring & Computer Science, Oakland Universily,
Rochester, M1, 1987,

P.G. Trankl, S.N. Weiss, and E.J. Weyuker, “Asset: A
IEEE

&]

—_—

“The complexity of data flow criteria for

)

—_

flow testing strategics.”

6

—_—

system (o seclect and evaluate tests.” In Proc.
Confercnce on Software Tools [April 1985), 72-79.

[7] P.G. Frankl and E.J. Weyuker, “A data flow iesting tool.”
In Proc. Softfair II (December 1985).

(8] 1.B. Goodenough and S.L. Gerhart, “Toward a theory of
test data sclection.” J[JEEE Trans.
(June 1975), SE-1, 156-173.

[9] W.E. Howden, “Methodology for the gencration of program
test data [EEE Trans. Computers (May 1975}, C-24(5),
554-559,

(10] W.E. Hawden, “Functional program testing” [EEE Trans,
Software Enginecring (Mavrch 1980), SE-6(2), 162-169.

(13] P.M. Herman, “A data flow analysis approach to program

Software Engincering

testing." In The Australian Computer Journal [November
1976), 8(3), 92-96.

79

[12] J. Laski and B. Korel, “A data flow oriented program testing
strategy.” [EEE Trans. Software Engincering (May 1983),
SE-9(3), 347-354.

[13] S.C. Ntafos, “On required element testing.” [EEE Trana,
Software Engincering (November 1984}, SE-10(6), 795-803.

[14] S. Rapps and E.l. Weyuker, “Selecting software test data

IEEE Trans. Software
Engincering (April 1985), SE-11{4), 367-375.

(15) S.J. Zeil, “Selectivity of data-flow and control-flow path

criteria.”

using data flow information.”

In Proe. Second Workshop on Software Teating,
Verification, and Analysis (July 1988), 216-222.

[16) R.G. Dromey, How fo Solve il by Compuler,
Prentice-Hall International, 1982).

[17] J. Bieman, A. Baker, P, Clites, D. Gustafson, and A. Melton,

“A standard representation of imperative language programs

(London:

for data collection and software measures specification.” The
Journal of Systems and Sofiware (January 1988), 8(1),
13-37.

(18] A. Baker, J. Bieman, and P. Clites, “Implications for formal
specifications - resulls of specifying a sofltware engineering
tool.” In Prec. COMPSACSE7 (October 1987), Tokyo, Japan,
131-140,

[19] J.L. Schultz, “Measuring the cardinality of execuiion path
subsels mecting the all-du-paths testing criterion.” M.S, The-
sis, Department of Computer Science, Towa State University,
Ames, 1A, 1988,

[20] J. Bieman and J. Schultz, “Estimating the number of test
cases required to satisly Lhe all-du-paths testing criterion.” In
Proe. Software Testing, Analysis and Verification Symposium
(December 1989), 179-186.

[21] K. Doh, 1. Bicman, and A. Baker, “Generating a standard
representation from pascal programs.”
86-15, Dept. of Computer Science, Jowa State University,
Ames, 10, 1986.

[22] J. Bieman and J. Schultz, “An empirical evaluation of the

Technical Report CS5-89-118,
Computer Science Dept., Colorado State University, Fort
Collins, C(, 1989.

[23] K.-C. Tai, “A program complexity metrie based on data low
information in control graphs.” in Proc. 7th International
Conference en Seflware Engineering (1984), 239-245.

[24) E.J. Weyuker, “An empirical study of the complexity of
data flow testing.” In Proc. Second Workshop on Softwere
Testing, Verification, and Anelysis (1988), 188-195.

[25] E.J. Weyuker, “The cost of data flow testing: An empirical
study.” IEEE Trans, Softwarc Engineering {February 1990),
16(2), 121-128.

[26] B.W. Kernighan and P.J. Plauger, Software Tools in Paascal.
(Reading, MA: Addison Wesley, 1981).

Technical Report

all-du-paths testing critedon.”

