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Abstract

A number of scientific applications are performance-limited by ex-
pressions that repeatedly call costly elementary functions. Lookup ta-
ble (LUT) optimization accelerate the evaluation of such functions by
reusing previously computed results. LUT methods can speed up ap-
plications that tolerate an approximation of function results, thereby
achieving a high level of fuzzy reuse. One problem with LUT optimiza-
tion is the difficulty of controlling the tradeoff between performance
and accuracy. The current practice of manual LUT optimization adds
programming effort by requiring extensive experimentation to make
this tradeoff, and such hand tuning can obfuscate algorithms.

In this paper we describe a methodology and tool implementation
to improve the application of software LUT optimization. Our Mesa
tool implements source-to-source transformations for C or C++ code
to automate the tedious and error-prone aspects of LUT generation
such as domain profiling, error analysis, and code generation. We
evaluate Mesa with five scientific applications. Our results show a
performance improvement of 3.0× and 6.9× for two molecular biology
algorithms, 1.4× for a molecular dynamics program, 2.1× to 2.8× for
a neural network application, and 4.6× for a hydrology calculation.
We find that Mesa enables LUT optimization with more control over
accuracy and less effort than manual approaches.
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1 Introduction

Applications in scientific computing are often performance-limited by elemen-
tary function calls [28, 33]. Such functions are common in scientific code, so
designers have long studied how to accelerate them with lookup table (LUT)
hardware [9, 29]. Despite hardware support, software libraries often equal
or exceed hardware performance, as shown in Table 1, possibly because soft-
ware evolves more quickly than hardware [9]. Software LUTs can improve
elementary function performance [33], but determining if a software LUT is
applicable and optimizing its parameters by hand is cumbersome.

LUT optimization partitions the input domain of expressions or functions
into intervals. Each interval is represented by a LUT entry that stores a sin-
gle output value that is shared across all inputs in the interval. The original
expression is replaced by an indexing function that locates the interval and
returns its corresponding LUT entry. A LUT optimization is beneficial when
(1) enough fuzzy reuse1occurs to amortize the LUT initialization and over-
head, (2) the LUT access is significantly faster than evaluation of the original
function, and (3) the LUT can provide the needed accuracy without excessive
memory use, such as is the case when the input domain is restricted.

Performance tuning methods such as LUT optimization require a substan-
tial development effort for scientific programmers [26], because such domain-
specific optimizations are usually applied manually [17]. Manual LUT opti-
mization is time-consuming because of the need to explore parameters such
as the table size and sampling method that determine the tradeoff between
performance and accuracy. This paper presents a methodology and source-
to-source transformation tool that automates the most time-consuming and

1Fuzzy reuse is a concept introduced by Alvarez et al. [2] in which function results are
approximated in order to increase reuse.

Table 1: Performance of elementary function instructions.
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

x86 Execution Math Execution Relative

Instruction Time Library Time Performance

FSIN 35.2ns sin 36.5ns +3.6%

FCOS 33.9ns cos 36.9ns +8.8%

FPTAN 72.9ns tan 51.8ns −28.9%

FSQRT 8.1ns sqrt 1.8ns −77.7%
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error-prone steps required for LUT optimization, including error analysis,
domain profiling, and code generation.

Our LUT research was motivated by a collaboration with the Small Angle
X-ray Scattering (SAXS) project [24] at Colorado State University (CSU).
For the project we received R code that simulates the discrete X-ray scatter-
ing of proteins. We ported the SAXS code from R to C++, but its perfor-
mance still failed to meet requirements. To reduce execution time we man-
ually incorporated a LUT optimization for the dominant calculation. The
result was a significant speed up, but our ad hoc approach for determining
optimal LUT parameters was costly and had to be repeated for each architec-
ture of interest. To simplify future LUT tuning we developed the Mesa tool.
We have since used Mesa to tune a continuous version of SAXS scattering, a
molecular dynamics program, a neural network, and a hydrology calculation.

Table 2 shows the performance improvement and error statistics achieved
using Mesa. The top two rows show variants of the SAXS application [24],
the third row shows the Stillinger-Weber molecular dynamics program [14],
the fourth row shows a CSU neural network application [19], and the fifth
row evaluates a calculation from a Precipitation-Runoff Modeling System
(PRMS) [21]. We attribute the effectiveness of LUT optimization to the
high level of fuzzy reuse inherent in these applications, which are described
in more detail in Section 3. Relative error is listed in all cases except PRMS,
which reports absolute error. The relative error is misleading in this case
because the computation of relative error divides the error by the original
output. If this value is close to zero then the resulting relative error is huge,
despite the small magnitude of the absolute error.

Table 2: Mesa performance improvements and error statistics.
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

Relative error is shown for all applications except hydrologic analysis,
which reports absolute error because its results are close to zero.

Application Orig. Optd. Speedup Maximum Memory

Name Time Time Error Usage

SAXS Discrete Algorithm 283s 41s 6.9× 5.4X10−3% 4MB

SAXS Continuous Algorithm .726s .239s 3.0× 1.8X10−3% 3MB

Stillinger-Weber Program 14.7s 10.3s 1.4× 2.9X10−2% 400KB

CSU Neural Network 11.0s 3.9s 2.8× 6.2X10−2% 4MB

PRMS Hydrologic Analysis 234ns 53ns 4.6× 3.2X10−5 800KB
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In a previous workshop paper [31], we described version 1.0 of the Mesa
tool, which lacked support for domain profiling and linear interpolation and
required a separate specification of candidate expressions outside the source
code. We used this preliminary version of Mesa to optimize SAXS discrete
scattering with 1D and 2D LUT optimization, and we showed that perfor-
mance improvements in the scope of the SAXS application required the LUT
data to fit into mid-level cache. A programmer using this version had to (1)
manually identify candidate expressions and their domains, (2) specify the
expressions and constituent variables in a file, (3) run Mesa to generate code,
and (4) manually integrate the resulting code back into the application.

In this paper, we present a pragma-based approach to apply LUT op-
timization to expressions in C or C++ source code, thereby extending the
reach of Mesa to full applications. We show that version 1.1 of Mesa reduces
programming effort by automating the generation and integration of LUT
optimization code. We have added boundary error analysis to improve tool
performance, and linear interpolation sampling to increase accuracy. The
major benefit of this work is to allow the programmer to more easily find
an effective set of optimizations, while receiving feedback about the intro-
duced error. We have also evaluated version 1.1 of Mesa in the context of
four additional scientific applications, as shown in Table 2 and described in
Section 3.

The primary contributions of this paper are:

• A methodology for software LUT optimization, so that programmers
will no longer need to depend on ad hoc methods.

• A demonstration of domain profiling, error analysis, and code genera-
tion in the context of full applications using our Mesa tool.

• Additional experimental results that suggest the LUT data must reside
primarily in mid-level cache to be effective.

• An investigation of the error and performance differences between di-
rect access and linear interpolation.

• A case study showing that LUT optimization maintains its effectiveness
in the context of parallel execution on a multicore architecture.

Section 2 introduces our LUT optimization methodology and the Mesa
tool. Section 3 presents case studies on the use of Mesa to optimize applica-
tions, and evaluates the effectiveness of the tool in terms of performance and
programming effort. Section 4 explores related work and Section 5 describes
limitations. Section 6 lists threats to validity and Section 7 concludes.
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2 LUT Optimization Methodology and Mesa

The goal of our research is to help scientific programmers use LUT optimiza-
tion in a more effective and efficient manner. Because the existing literature
lacks a systematic methodology for LUT optimization, we define our own.
We have broken down the process into the following steps:

1. Identify elementary functions and expressions for LUT optimization.

2. Profile the domain and distribution of the LUT input values.

3. Select the LUT size based on the desired input granularity.

4. Analyze the error characteristics and memory usage of the LUT data.

5. Generate data structures and code to initialize and access LUT data.

6. Insert the generated LUT code into the application.

7. Compare performance and accuracy of the original and optimized code.

The current practice for LUT optimization is to write code manually, of-
ten without careful analysis of the performance or error implications. Our
methodology is independent from its implementation in a tool, for example
we can apply the steps shown above manually. However, a methodology is es-
pecially important to when considering automation. We developed the Mesa
tool to automate the most time-consuming part of the methodology shown
above, including steps 2, 4, 5, and 6. Mesa can optimize elementary function
calls including sin, cos, tan, exp, log, and sqrt. Mesa also optimizes expres-
sions identified by pragmas, including combinations of elementary functions
and arithmetic operators: +, -, *, and /. A description of how Mesa supports
the methodology follows.

Mesa does not support identification of candidate functions and expres-
sions (Step 1), since many suitable profiling tools such as gprof [13] already
exist. Mesa automates domain profiling (Step 2) by generating an instru-
mented version of the application to capture the domain boundaries and
distribution. LUT size selection is specified on the command line (Step 3),
however Mesa provides detailed error analysis (Step 4) so that the program-
mer can iterate size selection and error analysis until the LUT optimization
meets the application requirements. Mesa reduces development time by com-
pletely automating code generation and integration (Steps 5 and 6). The
comparison of the original and optimized code (Step 7) remains manual.
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2.1 Elementary Function Optimization

To demonstrate the methodology with a simple example, we show the opti-
mization of a single elementary function with Mesa. Figure 1 shows command
line and program output from a Mesa run that optimizes sine calls. The com-
mand line specifies the original and optimized source files, elementary func-
tions(s) to be optimized, table size, and error analysis method. Mesa uses
the Rose compiler infrastructure [23, 16] to parse the file into an abstract
syntax tree (AST) on which it can operate.

Figure 2 shows the generated code, which is defined and instantiated as
a C++ class with everything needed for the optimization, including a public
method for the LUT approximation function. Mesa inserts the C++ class at
the beginning of the module, and replaces instances of the original function
with a call to this method. Mesa calls Rose to unparse the modified AST
into an output file with the LUT code. The optimized file is substituted for
the original file and the application is rebuilt.

The sine tables in Figure 3 are generated by running Mesa with a direct
access sampling method, meaning without any form of interpolation between
entries. We show small LUT sizes of 16 and 32 entries to illustrate the error
terms. The original function is shown by f(θ) and the approximation is shown
by l(θ). The area between the original function and approximation represents
the magnitude of the error introduced by the LUT, which is plotted as e(θ).
For direct access, the error term is error at the center of each LUT interval,
because Mesa evaluates the original function at the center to compute the
output value. The maximum error occurs at the boundaries of the LUT
interval. The graphs in Figure 3 show the tradeoff between LUT size and
accuracy. Tables with more entries exhibit smaller errors and vice verse.

. /Mesa o r i g i n a l . cpp optimized . cpp −exhaus t i ve − l u t s i n − l u t s i z e 2048
Mesa LUT opt imi zat i on s ta r t ed
Lower Bound : 0.000000 e+00
Upper Bound : 6.383185 e+00
Granu lar i ty : 3 .116790 e−03
Lut s i z e : 2048
Error an a l y s i s : exhaus t i ve
Emax : 1 . 53 e−03, Eavg : 4 . 88 e−04
Replaced s i n with c l u t . s i n
Mesa LUT opt imi zat i on completed

Figure 1: Optimizing elementary functions with Mesa.
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// S t ar t o f code generated by Mesa , vers ion 1.1
const f loat f s inLower = 0.000000 e+00;
const f loat f s inUpper = 6.383185 e+00;
const f loat f s inGran = 1.595796 e−03;
c l a s s CLut {

publ i c :
// LUT Constructor
CLut ( ) {

for (double dIn=fs inLower ; dIn<=fs inUpper ; dIn+=fs inGran )
l u t s i n . push back ( s i n ( dIn + ( fs inGran / 2 . 0 ) ) ) ;

}
// LUT Destructor
˜CLut ( ) {

l u t s i n . c l e a r ( ) ;
}
// LUT Approximation
f loat s i n ( f loat f s i n ) {

while ( f s i n < 0 .0 f ) f s i n += (2 . 0 f ∗ M PI ) ;
while ( f s i n > ( 2 . 0 f ∗ M PI ) ) f s i n −= (2 . 0 f ∗ M PI ) ;
int uIndex = ( int ) ( f s i n ∗ ( 1 . 0 f / f s inGran ) ) ;
return ( l u t s i n [ uIndex ] ) ;

}
pr i va t e :

// LUT Data
std : : vector <f loat> l u t s i n ;

} ;
// Object i n s t a n t i a t i on
CLut c l u t ;
// End of code generated by Mesa , vers ion 1.1

Figure 2: Listing of code generated by Mesa.
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Figure 4: Workflow diagram for Mesa.

2.2 Pragma-Based Expression Optimization

Figure 4 shows the workflow for expression optimization, which is a superset
of elementary function optimization. The programmer starts by running the
original code to establish a baseline for performance and accuracy. Domain
profiling and optimization require the programmer to insert a pragma into
the C or C++ source code to identify the target expression. Elementary
function optimization does not require pragma insertion because elementary
functions are easily identified by Mesa.

Figure 5 shows a code fragment after addition of the pragma. The code
shown is the dominant calculation of SAXS discrete scattering. Domain pro-
filing is initiated with a command line option that creates an instrumented
version of the unoptimized program. When the program runs, profiling in-
formation is gathered and written to a data file. The workflow continues by
running Mesa with the same pragma flag, this time requesting expression
optimization. During optimization Mesa reads the profiling data, performs
an error analysis, and generates LUT code and data structures. As with
elementary function optimization, the LUT size must be specified.
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// I t e r a t e s t e p s ( outer loop )
for ( s tep = 0 ; s tep < 1000; ++step ) {

// I t e r a t e atoms ( middle loop )
for ( atom1 = 0 ; atom1 < vecAtoms . s i z e ( ) ; ++atom1 ) {

// I t e r a t e atoms ( inner loop )
for ( atom2 = atom1 ; atom2 < vecAtoms . s i z e ( ) ; ++atom2 ) {

. . .
// Compute d i s tance between atoms
f loat fD i s tance = d i s t ance ( atom1 , atom2 ) ;
// Compute s c a t t e r i n g ang le
f loat fTheta = m fStep ∗ ( f loat ) ( s tep + 1 ) ;
// Combine parameters to s c a t t e r
f loat rTheta = fDi s tance ∗ fTheta ;
. . .
// Optimize subexpress ion shown below
#pragma LUTOPTIMIZE
f In t e rmed i a t e = s i n f (FOURPI ∗ rTheta ) / (FOURPI ∗ rTheta ) ;
. . .

}
}

}

Figure 5: Insertion of a pragma for expression optimization.

. /Mesa o r i g i n a l . cpp optimized . cpp −pragma − l u t s i z e 200000 −exhaus t i ve
Mesa LUT opt imi zat i on s ta r t ed
Enter parameters for rTheta
Lower bound : 0 . 0
Upper bound : 0 . 2
Var i ab l e : rTheta
Lower Bound : 0.000000 e+00
Upper Bound : 2.000000 e−01
Granu lar i ty : 1 .000000 e−06
Lut s i z e : 200000
Error an a l y s i s : exhaus t i ve
Emax : 2 . 79 e−06, Eavg : 1 . 00 e−06
Mesa LUT opt imi zat i on completed

Figure 6: Optimizing an expression with Mesa.

Figure 6 shows the Mesa command line and output for expression op-
timization. The -pragma flag causes Mesa to insert code for the specified
LUT optimization into the application, and Mesa optionally performs error
analysis. The programmer may need to run Mesa several times to determine
whether the LUT optimization can meet accuracy requirements while fitting
into mid-level cache, but repeated runs can be scripted. When this is com-
plete the programmer compiles and runs the generated code and compares
it performance and accuracy against the original version. The next sections
provide detail on domain profiling, error analysis, and code generation.
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2.3 Domain Profiling

To determine the extent of LUT data, we must capture the domain of each
input variable. Mesa does this through a profiling option that generates a
transformation to add instrumentation to the program. The programmer
can characterize the input domain by running the instrumented program
with representative data sets. Mesa stores domain information in a data
file that can be edited, so that a programmer can use domain expertise to
adjust the domain boundaries if necessary. If the data file is missing, Mesa
prompts for domain values. When the domain is known in advance, the
programmer can optimize the code without profiling by creating the data file
manually. Mesa additionally supports the generation of assert statements
that halt execution and report an error condition if the domain is exceeded
during program execution.

Some elementary functions are cyclical, so the input domain is intrinsi-
cally known. For example, sine and cosine tables need only store the interval
from 0 to 2π radians. Input values outside of that interval can be folded back
by a modulo operation or iterative addition and subtraction. This operation
is called domain conditioning or range reduction. Mesa has a command line
option to generate domain conditioning code for cyclical functions such as
sine and cosine, as shown in Figure 2.

Mesa captures the domain of input variables and the number of executions
of the expression. The former is necessary to build LUT data, and the latter is
intended for future support of performance modeling. We have experimented
with a modified version of Mesa that captures the complete distribution of
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input data. Figure 7 shows the distribution of the input variable rTheta
from the SAXS discrete scattering application. Note that the left half of the
LUT is used much more frequently than the right side.

Figure 7 suggests that some LUT optimizations may benefit from storing
only a partial domain. This requires the generation of conditional code that
accesses LUT data only inside the partial domain. Outside of the partial
domain the original function must be called. For the applications we have
evaluated, the cost of the conditional negates the benefit of the reduced LUT
size, but our preliminary data is too limited to generalize this result.

2.4 Error Analysis

Error analysis computes LUT error statistics by combining the individual er-
ror terms as shown in Figure 3. We are primarily interested in the maximum
error Emaximum and the average error Eaverage over the entire LUT domain.
These statistics allow us to characterize the error introduced by the LUT ap-
proximation. Computing error statistics is essentially a problem of sampling
the LUT domain. Within each interval the error analysis code computes er-
ror terms for a set of samples by evaluating the original and approximation
functions. Mesa implements three different algorithms for sampling: exhaus-
tive, stochastic, and boundary. Each computes the error statistics for all
LUT intervals, then combines the results to get values for the entire LUT.

The exhaustive method performs a brute force numerical traversal of the
input domain, at a resolution of FLT EPSILON or 1.2X10−7. This yields an
exact answer for single-precision LUT data, but the method is very expensive.
On our benchmark system (Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single
core), exhaustive sampling requires approximately 40 seconds to analyze the
domain [0.0, 20.0] for the SAXS discrete scattering. This fails to meet our
goal of performing error analysis on multiple expressions in real time.

The stochastic method samples the domain randomly. The key drawback
for this method is the lack of a general rule for determining the number
of samples required to converge on an accurate answer. Our experiments
show stochastic sampling computes a value of Eaverage that approaches the
exhaustive method with an order of magnitude fewer samples, however its
computation of Emaximum can vary widely. The performance of stochastic
sampling for the domain listed above is less than 5 seconds on the benchmark
system. Because of the inaccuracy of the Emaximum computation, we have
deprecated the stochastic method in Mesa.
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The boundary method makes the simplifying assumption that the max-
imum error can be found at the LUT interval boundaries for direct access,
and at the LUT interval center for linear interpolation, as proposed by Zhang
et al. [33]. This computation takes less than 0.2 seconds on the benchmark
system, and the results are identical within 1.2X10−5 of exhaustive sampling
for the applications we evaluate in this paper. The boundary method com-
putes only Emaximum, since Eaverage requires more extensive sampling. We
use the boundary method for fast determination of error statistics.

Figure 8 shows error statistics generated by Mesa. We collected the data
by calling Mesa from a script for the series of LUT sizes shown. Exhaustive
error analysis was used to compute both Emaximum and Eaverage. The graph
shows one of the main benefits of Mesa, which is that the tool allows the
programmer to evaluate the accuracy of different LUT sizes. Note the linear
relationship between accuracy and table size. This is common for smooth
functions such as trigonometric operations. For the sine table we see a 2×
decrease in error for each 2× increase in table size.

We conclude from the graph that LUT sizes that fit easily within mid-level
cache on a modern processor can produce usable error values. For example,
the 256KB sine table shown in Figure 8 has a maximum error of 4.82X10−5

and an average error of 1.53X10−5. In Section 3 we show that such tables
can significantly increase performance.
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So far we have only discussed the error that occurs at the time that
a function result is approximated. Returning an imprecise function result
causes a computational error, which is propagated through the application
by further calculations that use the function result. The numerical analysis
of this error propagation is beyond the scope of the current version of Mesa,
but measuring the application error is critical to the success of the LUT opti-
mization. For this reason, our methodology includes a manual comparison of
the accuracy of the original and optimized application. For each application
in this paper, we compute the maximum error and average error based on
the final output of the application. These statistics, along with the measured
performance improvement, form the basis for deciding whether a particular
LUT optimization is beneficial.

2.5 Code Generation

We have shown the code generated by Mesa in Figure 2. Mesa uses the
Rose compiler [23] to implement code transformations, thereby leveraging
the ability of Rose to parse and unparse arbitrary C and C++ syntax. Code
generation and code integration is done by the Mesa tool itself. The current
implementation inserts a C++ object at the beginning of the source module
being processed. A global declaration ensures that the object is constructed
when the application starts and destroyed when it ends. The initialization
of LUT data is performed by the constructor, based on a reconstructed func-
tion that mirrors the original computation, and LUT data is freed by the
destructor on application exit. The LUT approximation function is public
and can therefore be called from anywhere in the application.

The current implementation operates on C or C++ code, but the result-
ing program must be compiled with C++ because Mesa generates code that
contains C++ objects and containers. Mesa generates single-precision LUT
data, which is sufficient for the applications and LUT sizes we have stud-
ied. Single-precision uses less cache memory, and we find linear interpolation
is more effective for increasing accuracy than double-precision. However,
double-precision LUT data could potentially benefit applications with high
accuracy requirements and very restricted domains. Further investigation is
require to characterize how such a change of precision would affect accuracy
and performance. The topic of using single-precision versus double-precision
math in scientific computations is explored by Buttari et al. [4].
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Figure 9: Lookup table for sine function: linear interpolation.

2.6 Sampling Methods

The sampling method determines how the output is computed from LUT
entries. The simplest form of LUT optimization uses direct access, which
returns the closest individual LUT entry to an input value. We can reduce
approximation error without increasing memory usage by employing linear
interpolation between adjacent LUT entries. Interpolation improves the LUT
accuracy but adds computation and an extra LUT access for each evaluation,
since the LUT value on both sides of the input value must be fetched.

The sine tables in Figure 3 are made using direct access, while Figure 9
graphs the same 16 and 32 entry sine tables using linear interpolation. Lin-
ear interpolation combines the two closest LUT entries based on the relative
distance from the input value. In contrast to direct access, linear interpola-
tion has zero error at the boundaries instead of the center. Conversely the
maximum error is close to the center for linear interpolation. Accuracy can
be further improved by techniques such as polynomial reconstruction, which
is commonly used in hardware solutions where the increased computational
load can be handled by additional circuitry. We plan to add polynomial re-
construction as a future enhancement to Mesa. Mesa supports direct access
by default, and linear interpolation is enabled through a command line op-
tion. We find that linear interpolation improves the error by approximately
an order of magnitude for the elementary functions. In Section 3 we compare
the accuracy and performance of direct access and linear interpolation on the
SAXS discrete scattering code.

In summary, we have defined a methodology for LUT optimization and its
implementation in the Mesa tool. Mesa optimizes elementary functions and
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expressions that combine those functions with basic math. A programmer
uses Mesa by inserting one or more pragmas to identify candidate expres-
sions. The programmer then runs Mesa to create a profiling version of the
application that captures and stores domain information. Mesa reads the
domain information and automatically generates a LUT optimized version of
the application. The process completes when the user evaluates the perfor-
mance and accuracy of the optimized code versus the original. In the next
section we evaluate Mesa on a set of scientific applications.

3 Case Studies

We evaluate our methodology in terms of ease of use, accuracy, and perfor-
mance by using Mesa to optimize five scientific applications. The first two
applications are part of the SAXS project [24], a multi-disciplinary project
at CSU between the Molecular Biology, Mathematics, Statistics, and Com-
puter Science departments. SAXS is an experimental technique that explores
the structure of molecules [11]. SAXS can be simulated on a computer via
discrete or continuous algorithms. A partial discrete scattering simulation
was written in the R language by members of the Statistics department,
then ported to C++ and completed by one of the authors of this paper. A
complete simulation of continuous scattering was written in MATLAB by
members of the Math department, then ported to C++ by various people in
the Computer Science department. The SAXS code base for both algorithms
currently consists of around 5000 lines of C++, not including documentation,
data, and test code. The third application is Stillinger-Weber, a molecular
dynamics program developed and used for research at Cornell University [14].
It consists of slightly more than 3000 lines of C. The fourth application is
neural network code [19] developed by a faculty member in our Computer
Science department and used in [3], which contains around 1100 lines of C.
We have modified the C applications minimally to support C++ compilation
and Mesa optimization. The fifth case study evaluates a computation from
the Precipitation-Runoff Modeling System (PRMS) developed by the United
States Geologic Survey [21] for hydrologic modeling. We were given Java
code containing an expensive function that computes a slope aspect, which
we have converted into approximately 1000 lines of C++. We refer again to
Table 2 for a summary of the performance improvement and error statistics
for each application.
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3.1 Molecular Biology

Our first case study is the SAXS application that simulates the discrete scat-
tering of a molecular model using Debye’s formula [11] shown in Equation (1).

I(θ) = 2ΣN−1
i=1 ΣN

j=i+1Fi(θ)Fj(θ)sin(4πrθ)/(4πrθ) (1)

The formula computes the intensity based on the interaction of pairs of atoms
in the molecule. The code with the dominant calculation was shown in Fig-
ure 5. The fDistance variable represents the distance between atoms, calcu-
lated in the middle loop. The fTheta variable is the scattering angle, which
varies for each iteration of the outer loop. The only elementary function
called in the loop is the sine function.

Performance profiles of the SAXS scattering code show that the expres-
sion with the sine call dominates the computation, so we identify this expres-
sion with a pragma. We invoke Mesa multiple times with the pragma option,
varying the LUT size. Mesa constructs a LUT optimization of the expression
on the right-hand side of the assignment statement following the pragma. A
previous run using the Mesa profiling option captured the input domain as
approximately 0.0 to 20.0, so Mesa builds a LUT over this domain.
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Figure 10: SAXS discrete scattering simulation results
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)
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for ( int j = 0 ; j < m vecGeometry . s i z e ( ) ; j++) {
. . .
// Sca t t e r i n g equat ion
dSum0 += m vecGeometry [ j ] . fDens i ty ∗ exp ( dSigma ∗ ( fProduct / 2 . 0 ) )

∗ s i n ( vecProduct [ j ] ) ;
dSum1 += m vecGeometry [ j ] . fDens i ty ∗ exp ( dSigma ∗ ( fProduct / 2 . 0 ) )

∗ cos ( vecProduct [ j ] ) ;
}

Figure 11: SAXS continuous scattering code.

For each table size, we run the application and compare the performance
and accuracy with that of the original code. Figure 10 shows the results from
this experiment. The original time Toriginal and optimized time Toptimized are
measured against the right axis. The vertical line in the graph indicates the
amount of L2 cache in the system. The graph shows that the original time is
constant and the optimized time increases with the memory usage. Amaximum

and Aaverage are measured against the left axis.
Based on the graph in Figure 10, we select 4MB as the optimal LUT size

to stay within the biochemists’ requirements for accuracy without overflowing
the L2 cache. The performance improvement is 6.9×, with a maximum error
4.6X10−3%. For the SAXS discrete scattering code we initialize the table by
evaluating the expression approximately 1 million times. The resulting table
is accessed 4.6 billion times by the application, so each table entry is reused
more than 4,600 times on the average.

Our second case study uses code that implements another set of equations
that model X-ray scattering, using a continuous instead of a discrete algo-
rithm. The C++ code for the inner loop of continuous scattering is shown
in Figure 11. Note the use of three elementary functions: exponential, sine,
and cosine. The equations that define continuous scattering are shown in
Equation (2).

I(q, ψ) =

( N
∑

j=1

dje
−σ2

j
q·q/2cos(q · µj(ψ))

)2

+

( N
∑

j=1

dje
−σ2

j
q·q/2sin(q · µj(ψ))

)2

(2)

Performance profiles of the SAXS continuous code show that elementary
function calls dominate the computation. We invoke Mesa to optimize the
sine, cosine, and exponential function calls, varying the table size. Figure 12
shows the results of optimizing the continuous scattering code, with the same
statistics as for the discrete case. Optimized performance varies from 4.5× to
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Figure 12: SAXS continuous scattering simulation results.
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

2.5× of the original when the LUT fits into L2 cache, then quickly degrades
to slower than the original code when L2 cache is exhausted. The graph in
Figure 12 shows 3MB as the optimal LUT size. The performance improve-
ment at this point is 3.2×, with a maximum error 1.8X10−3%. The LUT size
on the graph represents total memory usage of all three elementary function
tables. During initialization, the continuous scattering computes 100,000
LUT entries for each of the three elementary functions, but the application
calls each function at least 7.9 billion times, for an average of over 70,000
reuses per LUT entry. LUT optimization of discrete and continuous scatter-
ing improves for larger molecules, as shown in Table 3. The main reason for
this is that LUT initialization is amortized over more computation.

3.2 Molecular Dynamics

Our third case study is Stillinger-Weber [14], a molecular dynamics program
that models the physical movement of atoms and molecules by computing
the potential energy and interaction forces of particles. The simulation is
performed over a series of time steps to predict particle trajectories. Many
molecular dynamics applications exist, but we have chosen Stillinger-Weber
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Table 3: Saxs optimization performance and error on different molecules
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

Algorithm Molecular Number Speedup Maximum Memory

Type Model Atoms Error Usage

Discrete Scattering 4gcr.pdb 1556 6.8× 3.7X10−3% 4MB

Discrete Scattering 1xib.pdb 3052 6.9× 4.6X10−3% 4MB

Discrete Scattering 3eqx.pdb 5897 7.7× 9.4X10−3% 4MB

Continuous Scattering 4gcr.pdb 1556 2.9× 7.1X10−4% 3MB

Continuous Scattering 1xib.pdb 3052 3.0× 1.8X10−3% 3MB

Continuous Scattering 3eqx.pdb 5897 3.8× 1.9X10−2% 3MB

because the code contains a manual LUT optimization done by the original
authors. The dominant calculations in Stillinger-Weber are based on the
potential energy equations [27] of the same name, which take into account
2-body (φ2) and 3-body (φ3) interactions that call the exponential function,
as shown in Equations (3) and (4):

E =
∑

i

∑

j>i

φ2(rij) +
∑

i

∑

j 6=i

∑

k<i

φ3(rijrikθijk) (3)

φ2(rij) = Aijǫij [Bij(
σij

rij
)pij ]exp(

σij

rij − aijσij
) (4)

φ3(rij, rikθijk) = λijkǫijk[cosθijk − cosθ0ijk]
2exp(

γijσij

rij − aijσij
)exp(

γikσik

rik − aikσik
)

The original version of Stillinger-Weber optimized the 2-body and 3-
body calculation by precomputing multiple lookup tables for series of ex-
pressions. To evaluate Stillinger-Weber we removed LUT optimization code
from the original version and inserted straightforward implementations of
the Stillinger-Weber equations into the 2-body and 3-body loops. We used
the resulting unoptimized version of Stillinger-Weber as a baseline for per-
formance and accuracy. The process required several minor modifications
before we could run Mesa, including type casts to allow C++ compilation
and the coalescing of the 3-body computation into a single expression. Pro-
filing showed that the 3-body computation was dominant, with more than
55% of execution time as compared to 8% for the 2-body, so we focused on
the 3-body code.
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Table 4: Stillinger-Weber molecular dynamics simulation results.
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

Program Execution Performance Application Memory

Version Time Speedup Error Usage

Original 8.82s 1.67× 0.135% 5.6MB

Mesa (manual) 8.94s 1.62× 0.038% 2.0MB

Mesa (automated) 10.29s 1.42× 0.030% 400KB

Unoptimized 14.76 1.00× 0.000% 0.0MB

We applied the Mesa tool by identifying the 3-body expression with a
pragma and entering the domain limits, which are constant in this applica-
tion. The performance and error results are shown in Table 4. The Mesa
version achieves 4.5× better accuracy with 14× less memory usage than the
original code, but the performance is 16% slower. We modified the Mesa-
generated code by hand to include all of the expressions optimized by the
original version. By doing so we were able to closely match the performance
of the original version of Stillinger-Weber, with 3.5× better accuracy and
2.8× less memory usage. Mesa currently cannot handle this combination of
expressions, but we are working on a new version that can.

We also investigated the difference in accuracy between the original and
Mesa versions. We found that the ad hoc optimization propagates and mag-
nifies error terms by combining LUT values in successive expressions. Mesa
avoids this problem by optimizing only the critical expression. The disparity
in memory usage between these versions is because (1) Mesa stores single-
precision values and the original tables were double-precision, and (2) many
fewer expressions were optimized in the Mesa version. Mesa allowed us to
experiment with different LUT sizes, and we discovered that we could im-
prove accuracy significantly with a relatively small table. Another benefit
from using Mesa is that the entire optimization required only the addition
of a a single pragma to the code.

3.3 Neural Networks

Our fourth case study evaluates neural network code [19] developed by Chuck
Anderson at CSU. Profiling showed that the evaluation of transfer functions
in the neural network was a performance bottleneck that consumed approx-
imately 47% of the execution time. Two commonly used transfer functions
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Table 5: Mesa results on neural network code
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)

Transfer Orig. Optd. Speedup Orig. Optd. Maximum

Function Time Time Result Result Error

Logistics 7.9s 3.8s 2.1× 0.12407 0.12408 8.8X10−2%

Hyperbolic Tangent 11.0s 3.9s 2.8× 0.000295 0.000277 6.1X100%

are logistics f = 1.0/(1.0 + ex), and hyperbolic tangent f = tanh(x), both
of which call elementary functions. We optimized both functions, and the
results are shown in Table 5. The error terms may be less significant than
shown, since we conservatively compute them as the difference of small num-
bers, instead of scaling them based on the range of possible solutions. The
memory usage in both cases was 4MB, but we were also able to increase the
size of the LUT to exceed L2 cache without significant performance degra-
dation. It appears that the number of LUT accesses is much smaller than
the entire table, thus the LUT data does not actually overflow L2 cache.

3.4 Hydrology Modeling

Our final case study is a slope aspect computation from the PRMS appli-
cation [21] developed by the United States Geological Survey (USGS). The
function we optimized is used by PRMS to compute the slope aspect for a
single point on a terrain grid based a variety of parameters including the lati-
tude and declination. The computation is shown in Figure 13, and the results
of the optimization are shown in Table 2. The prevalence of sine and cosine
calls make this code a good candidate for elementary function optimization,
allowing Mesa to achieve a 4.6× speed up with a small error. The number of
variables in the slope aspect computation preclude expression optimization
with version 1.1 of Mesa.

3.5 Interpolation versus Direct Access

The results shown so far were generated with the direct access sampling
method. Mesa supports linear interpolation, which samples the adjacent
LUT entries and combines them in a linear fashion according to their dis-
tance from the input value. Figure 14 compares direct access and linear
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f loat CGeospatial : : Ca l cu l at i on ( int julDay ,
double aspect , double s lope , double l a t i t u d e )

{
// Dec l inat ion c a l c u l a t i on
double d e c l i n e = 0.4095∗ s i n (0 . 01720∗ ( julDay −79 .35)) ;

double s i n d e c l i n e = s i n ( d e c l i n e ) ;
double c o s d e c l i n e = cos ( d e c l i n e ) ;
double s i n l a t i t u d e = s i n ( l a t i t u d e ) ;
double c o s l a t i t u d e = cos ( l a t i t u d e ) ;
double s i n s l o p e = s i n ( s l ope ) ;
double c o s s l o p e = cos ( s l ope ) ;
double co s a spec t = cos ( aspect ) ;

double s l oped =
( s i n d e c l i n e ∗ s i n l a t i t u d e ∗ c o s s l o p e ) −
( s i n d e c l i n e ∗ c o s l a t i t u d e ∗ s i n s l o p e ∗ co s a spec t ) +
( c o s d e c l i n e ∗ c o s l a t i t u d e ∗ c o s s l o p e ) +
( c o s d e c l i n e ∗ s i n l a t i t u d e ∗ s i n s l o p e ∗ co s a spec t ) ;

double ho r i z on ta l =
s i n d e c l i n e ∗ s i n l a t i t u d e+co s d e c l i n e ∗ c o s l a t i t u d e ;

double s l opeAspect = s l oped / ho r i z on ta l ;
return s l opeAspect ;

}

Figure 13: PRMS slope aspect computation.
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Figure 14: Comparison of interpolation versus direct access.
(Intel Xeon E5450, 3.00GHz, 6MB L2 cache, single core)
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interpolation using the SAXS discrete scattering code. Execution time and
maximum application error are shown in the graph for both methods. The
extra computation for interpolation makes it slower than direct access. For
the LUT sizes shown, linear interpolation yields a speed up from 4.5× to
6.1×, as compared to a 6.1× to 10.7× speed up for direct access. The shape
of the performance curves is almost identical, implying that cache penalties
affect both cases similarly. The maximum error for linear interpolation starts
at almost an order of magnitude better for the smallest LUT size and im-
proves quickly until an advantage reaches more than two orders of magnitude
in the center of the graph. Thus linear interpolation may allow the LUT op-
timization to meet accuracy requirement in cases where direct access would
overflow the mid-level cache.

3.6 Case Study Summary and Evaluation

We define two criteria for evaluating our methodology. The first criterion is
effectiveness, which we measure quantitatively by comparing the performance
and accuracy of the Mesa code against the original version. The second
criterion is programming effort, which we define qualitatively as the effort
needed to apply a LUT optimization with Mesa as compared with the manual
process. We believe that programming effort is reduced in proportion to
ease of use of the tool. The LUT optimizations shown in this section are
effective because they achieve a significant speed up while meeting application
accuracy requirements, as shown by results of the case studies in Section 3.

Programming effort is greatly reduced over the original ad hoc imple-
mentation for the SAXS discrete code, which required several weeks of de-
velopment time and experimentation, even after completion of the original
algorithm. Characterization of error was especially time-consuming, because
it required multiple runs of the entire SAXS application. Mesa error analysis
allowed us to quickly identify efficient set of LUT parameters without over-
flowing mid-level cache. The SAXS continuous code was never optimized
manually because Mesa was available during its development period. Op-
timization of both the SAXS discrete and continuous code was done in a
matter of hours with Mesa, including the error analyses shown in Figures 10
and 12. We additionally find that the Mesa code very closely matches the
performance of the manually developed SAXS code. The other applications
were just as easy to optimize with Mesa, requiring at most a single pragma.
The development time for the manual optimization of the Stillinger-Weber
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code is unknown, but it is obvious that many complex code changes were
required, along with experimentation with table size versus performance and
accuracy. The other applications did not contain a prior LUT optimization,
so no direct comparison of development time is impossible.

3.7 Parallel Efficiency

Much of the current research in scientific computing focuses on multi-core
performance and programming effort. An important trend in multi-core sys-
tems is the decrease in memory access performance relative to processor
throughput. This motivates research on program transformations that min-
imize memory accesses. Despite this, we see no reason to neglect single-core
performance, as long as the resulting optimizations remain equally beneficial
in the multi-core environment. We verify that our optimizations meet this
criteria by comparing multi-core scaling on programs optimized with Mesa.
We have parallelized the SAXS discrete and continuous scattering loops with
OpenMP directives. Figure 15 shows that our optimizations scale well on
a Cray XT6m computer, and we have replicated this on several multi-core
systems include the benchmark system shown throughout the paper (Intel
Xeon E5450, 3.00GHz, 6MB L2 cache, eight cores). We conclude that our
single-core optimizations are independent from and complementary to par-
allelization.
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Figure 15: Parallel efficiency of SAXS application.
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4 Related Work

Optimizing compilers are efficient at improving the serial performance of
applications. However, the scope of optimizations provided by compilers
is somewhat limited. Current compilers do not generate algorithmic im-
provements or more efficient numerical techniques, nor can they completely
automate parallelization. As a result, manual tuning consumes a significant
amount of the development effort for scientific applications [26]. Besides
increasing programming effort, manual tuning has the disadvantage of ob-
scuring algorithms [17].

A current research topic in scientific computing is how to decrease the pro-
gramming effort [17] required to parallelize existing codes. Previous models
such as POSIX threads required an intensive programming effort and special
expertise. Current models such as OpenMP [6] raise the level of abstraction
for the programmer, reducing the amount of code that needs to be written.
Inserting pragmas is well accepted by scientific programmers using OpenMP,
so we have adopted the same model for Mesa. The end goal is automation,
which reduces effort by freeing programmers from low level details [5].

The LUT optimization approach described in this paper is motivated
by the observation that some applications evaluate elementary functions re-
peatedly with inputs within a restricted domain. This repeated computation
can be avoided by caching the results of function evaluation for later reuse.
Memoization [1] is a similar approach that reduces computation by caching
function results. Typically memoization algorithms guarantee precise reuse,
meaning that function results are always exact. Alvarez et al. [2] propose
fuzzy memoization in which fuzzy reuse allows results to be reused when the
input closely matches a previous evaluation. This achieves a much higher
level of reuse, but introduces error into the computation. The main dif-
ference between LUT optimization and memoization is that LUT methods
compute results for the entire domain in advance, eliminating the overhead
of identifying whether or not a result has been previously cached.

Considerable research has focused on optimizing the performance of ele-
mentary functions. The idea of approximating elementary functions in hard-
ware is long established, for example Gal [10] proposed combining a LUT
with a minimax polynomial. Frequently cited papers by Tang [29, 30] ap-
ply similar methods to implement elementary functions under the IEEE 754
floating-point specification [12]. LUT methods remain popular because they
provide good performance at a reasonable hardware cost. Much of the recent
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literature focuses on variants of polynomial reconstruction to improve the
accuracy of function evaluation between reference points [20].

There are few academic references on software LUTs, but some books [22]
and articles encourage the use of ad hoc techniques. A series of papers on
LUT hardware for function evaluation in FPGAs [25, 8] has culminated in
a paper by Zhang et al. [33] that explores both hardware and software LUT
methods. Zhang et al. present a compiler that transforms functions written
in a “MATLAB-like” language into C or C++ code suitable for multi-core
execution. Mesa performs a similar transformation in the context of C or
C++ source code, allowing optimization of entire applications. Similar to our
research, Zhang et al. show that LUT optimizations outperform standard C
and C++ code that calls elementary functions in the math library. Zhang et
al. conclude that (1) linear interpolation is a minimal requirement, (2) LUT
size is not a problem because of modern L2 cache sizes, and (3) the extra
expense of polynomial reconstruction may not be worthwhile in software.

The only other related work that we are aware of that addresses the im-
pact of cache usage on LUT performance is Defour [7]. Defour concludes
that LUT sizes must fit within L1 cache, however this observation is based
on very small tables in conjunction with highly accurate polynomial recon-
struction. We show that LUTs up to the size of the L2 cache can improve
the performance of function evaluation. We also extend the literature by
comparing the performance of direct access and linear interpolation across
a range of LUT sizes, and we find that lower overhead makes direct access
worthwhile in some cases.

5 Limitations

The primary limitation of the Mesa tool is that it parses only C and C++
code, and the resulting optimized code must be compiled with a C++ com-
piler. Mesa is currently limited to the elementary functions sin, cos, tan, exp,
log, and sqrt, but new functions are easily added. Mesa does not support
all possible C++ syntax, thus minor modifications may be required before
using the tool. For example, variables declared as const are not detected as
constants, and must be replaced with preprocessor defines, and type casts
are not allowed in candidate expressions. Mesa is also limited to expressions
that depend on a single free variable, so the tool will not detect and generate
multi-dimensional LUT data.
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The main limitation of LUT optimization is that the technique is suitable
only for programs that are performance-limited by computations with ele-
mentary functions. Such computations are common in scientific computing,
but many applications are performance-limited by memory accesses. These
applications may not benefit from LUT techniques, and the increase in mem-
ory usage can actually decrease performance. However, having access to a
lightweight performance tool such as Mesa greatly reduces the effort required
to see whether an application can benefit from LUT optimization. A second
limitation is that LUT data must share mid-level cache memory with the ap-
plication to avoid cache penalties. In practice this is often done successfully,
as shown by the case studies in this paper. The final limitation of LUT opti-
mization is that some applications may be unable to tolerate the decreased
accuracy inherent to LUT optimization. In contrast, many scientific simu-
lations are known to be based on very imprecise data, yet they often make
pervasive use of expensive high-precision floating-point operations. These
applications may be able to achieve a significant benefit without comprising
results. Several precedents for reducing the precision of elementary functions
exist, including the Enhanced Performance mode of the Intel Vector Math
Library (VML) [15].

6 Threats to Validity

There are four general types of validity relevant to empirical research: conclu-
sion validity, internal validity, construct validity, and external validity [32].
A study has conclusion validity if we can conclude that there is a relationship
between study variables of interest. Our study exhibits conclusion validity
since we can safely conclude that, among the programs in our study, programs
with LUT optimization have improved performance than those without LUT
optimization. We can also safely conclude that it takes more effort to perform
the optimizations by hand than by using Mesa.

Internal validity focuses on whether or not there is a causal relationship
between the treatment and external variables. Threats to internal validity
include having no rationale for the relationship between treatment and out-
come. In addition, other unmeasured factors that might be the real cause of
the outcome are threats to internal validity. In our study, there is a clear ra-
tionale for a cause and effect relationship between LUT optimization and the
dependent variables: performance, accuracy, and programming effort. Other
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unmeasured factors should not affect the outcome, since the only change to
the program is the replacement of function calls with a LUT access.

A study has construct validity when the treatment used in the study accu-
rately represents the concepts that we mean to study, and the measurements
of variable attributes are valid. Mesa performs LUT optimization in a manner
consistent with the descriptions of manually performed LUT optimization in
the literature. The measures of performance and accuracy are clearly valid.
The measurement of programming effort in terms of programming time is
consistent with the general notion of effort; a reduction in the time required
to implement a program represents a reduction in effort.

Results of a study with external validity will generalize beyond the study
data itself. External validity is often an issue with empirical research, because
of the limited number and scope of the applications that can be evaluated.
We would need to study a random sample of all scientific applications to elim-
inate all threats to external validity, but such a sampling is not practical. Our
empirical evaluation consists of case studies of five such applications in four
scientific areas. Further research is required to demonstrate applicability to
other scientific domains, and to better understand where our methodology is
most appropriate. However, we believe that the results in this paper will gen-
eralize to applications that share the characteristic of being limited primarily
by the evaluation of elementary functions.

7 Conclusions

This paper presents the Mesa source-to-source transformation tool and an
associated methodology for LUT optimization. We evaluate Mesa on five
scientific applications from four domains, and find that our tool reduces the
effort associated with LUT optimization. Our approach improves the current
practice of manual tuning by allowing programmers to create and analyze
LUT optimizations with very little effort and without writing code. Mesa
error analysis lets programmers improve performance with clear knowledge
of the effect on accuracy, without costly experimentation. The case studies
in this paper provide additional evidence that software LUT optimization
can exploit the fuzzy reuse inherent in many scientific programs to produce
significant performance gains of 1.4× to 6.9×, while maintaining reasonable
error bounds. The code for version 1.1 of Mesa as described in this paper is
available from our web site [18].
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