AN ANALYSIS OF SOFTWARE STRUCTURE
USING A GENERALIZED PROGRAM GRAPH

James M, Bieman and Narayan C. Debnath

Department of Computer Science
Iowa State University
Ames, Towa S0011

Abatract

A generalized program graph (GPG)} 1is an
abstraction of a program where nodes denote
variable definitions and predicates, and edges
denote either control flow or data dependencies.

A OPG can be constructed from programs written in
arbitrary imperative programming languages.
Analyses of GPG representations show the
interconnection between control flow constructs and
data dependencies. Using simple transformations, a
GPG can be converted into a control flow graph or a
data dependency graph and can therefore be used to
study control and data dependency 1ssues in
isolatlion. Because the GPG includes both the
control and dependency Information in one
abstraction, the GPG can be used as an
implementation model for the development of
measurement and analysis tools for empirical
research.

1. Introduction

Graph models have been useful abstractionas for
examining the programmer's perspective of the
statiec structure and complexity of Iimperative
programs, The familiar control flow graph (CFG)
has been used to study structured programming,
testing methodologies, and develop complexity
measures [MeCabe 76, Oveido 80, Harrison 81,
Evangelist B84, Howatt 85)]. The data dependency
graph (DDG} has been proposed as an abstraction
ugseful for studylng the interconnection between
data objects in a program and for developing
measures of data dependency complexity {Bieman BU4,
Bieman B85). Such graph models show promise as a
basis for developing a range of useful software
deaign and development tools.

The work described in this paper was motivated
by the desire to study the Interface between the
structure of control flow and data dependencies.
The complexity of the contrcl flow and the
complexity of the data dependencies are necessarily
intertwined. An increase in the complexity of the
data dependencies will result from an increase in
control flow complexity. A control flow
alternation construct can result in an inecrease in
the number of variable definitions that may be
referenced. This increase in the number of
referable definitions may extend far beyond the

0730-3157/85/0000/0254501.00 © 1985 IEEE

range of the alternation construct and this
increase cannot be viewed by examining the CFG
alene.

In order to study the interface between control
structure and data dependencies, we use a
generalized program graph (GPG)., The GPG -
incorporates features of both the CFG and the DDG.
The GPG representation 1s essentlally equivalent to
the string form of a program. However, because of
its graph structure, a GPG 1s better suited for
structural analysis than the original string form.

In this paper, we define the GPG and show some
examples of GPG construction. We present the
initial results of our analysls of the GPG
structure and the interface between control and
data dependency complexity. Finally, we discuss
some obvious practical and theoretical applications
of the GPG.

2. Generalized Program Graph

A program written in an imperative language
typlecally consaists of a set of variable
definitions, together with the unlque order of
execution of the definitions determined by control
flow constructs. A variable definition consists of
the name of the variable to be redefined, an
assignment operator and an expression that
evaluates to the value assigned in the definition.
The control flow i3 the direct representation of
the prescribed order of exseution of the
definitions in the program. The control flow, in
its simplest form, prescribes the sequential
execution of contiguous statements. However, if
there is more than one possible alternative next
statement, a predicate is used to specify the
choice. A predicate consists of an expressicn that
evaluates to elther true or false, and thls boolean
result determines the next statement to be executed
(we assume only binary predicates}.

The generalized program graph 1s an abstract
representation of a computer program written in an
imperative language. The OPG is a directed grarh
‘with each node denoting either a variable
definition or a predicate. Moreover, the graph has
an unique entry node, 8, and an unique exit node,

f. Formally, the GPG representation of a progranm P
is defined to be a digraph,

GPG = (N, E, s, f)

of nodes, N v {s,f}, and a finite
In particular,

with a finite set
set of edges, E.

N = Npu Np

where

(a2} there 1s a one-one mapping between the
elements in Np and the predicates in F, and
there is a one-one mapping between the
elements in Np and the variable definitions
in P,

{b)

Any node D £ Np of a GPG can be thought of as
representing a 2-tuple, <d,eyq>, where d corresponds
to a variable definitien and ey refers to the
expression associated with this definition, d.

Each node Q € Np of a GPG can be regarded as having
only an expression, eq, &@ssoclated with 1%,

The edges ln a GPG are also divided into two
disjoint sets, called control edges and dependency
edges. More specifiecally,

E=EcVEp

where Eg refers to a set of control edges and Ep
denotes a set of dependency edges, as defined
below. We are assuming that all control flow is
explicit - exceptions are not addressed.

(a) (u,v) e Eg iff u, v £ N and the statement
denoted by v in P can be executed immediately
after the execution of the statement denoted
by u in P.

(k) (q,r) € Ep 1ff q ¢ Np and r € N, and q denotes

a definition in P that can reach r and the
variable defined in q is referenced by the
expression associated with statement
represented by r in P. A definition of
variable v can reach node r if there is a
control flow path from q to r that is free of
redefinition of v [Heecht 771.

Note that the control flow edges in Eg are
essentially the same as the edges in a flow graph.
One can view a GPG as an expanded flow graph with a
node corresponding to each variable definition and
predicate rather than only for basle blocks.
Furthermore, edges denoting dependencies are added
to the GPG. The edges in Ep simply represents the
functionality or dependency of nodes in N on
definitions in Np.

3. GPG Construction

In this section we construct the generalized
program graph for two program segments written in
PASCAL. As defined in the previous section, each
node in a GPG denotes either a predicate or a
variable definition. A variable definition is
generated at each statement that may medify the

255

value of a variable. Such statements include
assignment statements and input atatements.
Initialization of a variable is also considered to
be a definition. For the readers benefit, each
definition node is labeled with a name identifying
the variable that the node represents and a
subscript. The subscripts are used to distinguish
between nodes denoting different definitions of the
same variable and are sequentially numbered based
on the relative positicn of the definition in the
source code. The predicate nodes are not
designated by any special labels. The expression
associated with a predicate or a definition node is
also implicit in the graph.

In the GPG diagrams, sclid lines are used to
denote control edges and dotted lines represent
dependency edges. In order to draw dependency
edges in the GPG, one must determine which
definitions are live at various program statements.
A varlable definition 1s considered "live" at a
specified statement if it i3 possible for the value
assigned to the variable at the definition to be
referenced at the statement. While drawing a
dependency edge, live definitions are collected
from alternate pathways in the program to determine
possible dependencies of a gilven variable
definition or a predicate at & particular
statement. Explicit structures of the GPGs
corresponding to two program segments written in
PASCAL are shown in Figure { and Figure 2.

In Figure 1, the node labeled Lrgy denctes the
definition of the initisl value of the variable
Lrg. The node labeled Newj represents the
definition of initial and successive values, if
any, of the varlable New. Similarly, the node
labeled Lrgs 1s the redefinition of variable Lrg at
statement 5, and the writeln statement is
considered to be a definition of an output file and
is represented by the node labeled Outyg.

The possible dependency edges were constructed
based on the strategy discussed in [Bieman 84].
For example, in statement U, the final value of the
predicate is dependent upon the definitions of
variables Lrg and New that may possibly reach this
statement. 8ince both the definitions of Lrg,
glven by statement 1 and statement 5, and only cne
definition of New can be live at statement Y4, the
node representing the predicate at this statement
has three dependency edges as drawn from nodes
labeled Lrgy, Lrgs, and New3. The redefinition of
Lrg at statement 5 and the node dencting the
condition of the repeat..until loop at statement 6,
each has one dependency edge corresponding to only
posaible live definition of the variable New given
by statement 3. Finally, two possible live 3
definitions of variable Lrg at statement 7 provides
two dependency edges drawn at the node labeled
Outq,

Referring to Figure 2, one should note that the
nodes labeled Ap and By represent the definitions
of the initial values of the variables A and B,
respectively. We assume these initial values are
set via explicit initialization or from input

Program 1.

1 Lrg := 03

2 Repeat

3 Readln(New);

4 If Lrg < New then

5 Lrg := New

6 Until New < 0

7 Writeln{Lrg};

Figure 1. GPG for Program 1

statements. The nodes X1, Y3, and Z3 denote the

initlal definitions of the corresponding variables
at the apprepriate positiens of the source cede.
The nede following the definitlien Z3 refers to the
condition of the while-loop. The redefinitions of
Y and Z are represented by the nodes labeled Y5 and
Zg, respectively. The node W7 shows the only
definition of the variable W. All the dependeney
edges at varlous nodes of the graph were drawn in
the same way as in Figure 1, HNote that, the self
loops at the nodes labeled Yg and Zg mean that
these definitions are dependent on themselves (from
previous iteratiens). A detailed discusaion about
the various sources of dependencles and how to
address specific constructs such as arrays,

functions, and procedure calls are given in [Bleman
B4].

4. Some Basic Properties Of The GPG

We present some basic properties of generalized
program graph and associated definitions. Beecause

256

1 x::ﬂi
2 Y :=z B:
3 Z = 0
4 ¥While ¥ <> 0 DO
Begin
5 Y:=Y-1
[Z =2+ X
End}
T We=2Z + 2
Figure 2. GPG for Program 2

the following properties directly follow from the
construction of the graph, they are described as
properties with informal justification rather than
as formal theorems.

Property 1. For every dependency edge (d,p) in a
GPG, d £ Np and p € N, there is a control flow path
from d to p.

The dependency edge (d,p) can exist only if the
definition represented by d can reach p by a
control flow path.

Definition 1. A path vq,v3,...,v with (v{,vi41) €
Ep and 1=1,...,k-1, 15 defined to be a dependency
path from v{ to vg.

Property 2. For every dependency path in a GPG
that 1s a eycle, there i3 a contrel flow cyecle in
the graph. This follows directly from Property 1.

Therefore, the existence of a control flow
cycle is necessary for a dependency self loop.

Definition 2. The Range of a predicate p 1s the
set of nodes that fall on eny path from the
immediate successors of p to the first node where
all paths from p merge, the GLB(p). The GLB(p) is
not included in the Range of p. [Howatt 85].

Definition 3. A definition d of a veriable v is
considered live at node n ¢ N if d can reach n.

Definition 4. For a predicate p ¢ Np and a
variable v, INFLUENCE (p,v) is defined to be the
set of nodes of the GPG at which any definition of
v made within the range of p are live.

Property 3. INFLUENCE (p,v) in a GPG may extend
beyond the range.

To illustrate this property, consider the
INFLUENCE of the predicate given in the code below
and the associated GPG shown in Figure 3.

cade

A := input value
if p then

X

A = £A)
else

Y;

A = g(A)
endif
Z t= £(A)

Figure 3. The Influence may extend beyond the

Range
In Figure 3:
A,X,1,2 € Np and p € Np,
Range of the predicate p = {X,Y,A1,42},
GLB(p) = Z,
INFLUENCE {p,4) = Z, and

Z ¢ Range of p.

257

Suppose Ap is the initial value of the variable
4, and Ay, Ap are the redefiniticns of A made
within the range of the predicate shown. Assuming
that Z is defined as a function of A, it 1s clear
that both the definitions Ay and A2 are live at
noda labeled Z. Also, the node labeled Z 1s the
GLB(p) and hence Z does not belong to the range of
this predicate. This result is purely due to
dependency edges that are added in the graph, and
the property is not evident from the control flow
graph alone.

Property 4. INFLUENCE (p,v), p € Np end v 15 a
Yariable, ends at a point past GLB{p) where v is
redefined in all paths from GLB(p).

The redefinition of the variable v at node n
kills any previous definitions of v that reach n.

Property 5. For a given predicate, p, te maximize
the increase in number of live definiticns of a
variable, v, there must be one and only one path
from p to the GLP(p) free of definition of v.

Consider the graph segments shown in Figure
4{a) and Figure 4(b).

(a) (p) (b) (»)
(v) () (v2)
(x) ()
Figure 4, A Predicate Maximizing the Increase

in Live Definitions

Assume that the pumber of iive definitions of
variable v gt the predicate node is n. Then in
case (a), the number of live definitions of v at
node labeled x is (n+1). While in case (b), the
nunber of live definitions of v at node labeled x
is only 2, irreapective of the value of n, since
the redefinitions of v in both the paths kill all
earlier definitions of v.

Property 6. For each node n ¢ N and for each
variable v referenced at n, the maximum number of
live definitions of v at n 13 equal to the number
of predecessor predicate nodes + 1.

Clearly, predicates can increase the number of
definitions that may be live when control exits the
range of a predicate. In general, for each
variable v, a predicate p can increase the number
of definitions of v that can reach GLB(p) by one
{assuming a 2 alternative predicate). The result
follows directly for any sequential or nested
control fiow construats.

Property 7. For each node n ¢ N, the maximum
number of referenced variables is the number of
definition nodes, d e Np, representing the
definitions of unique variables that are
predecessors of n on a path from s to n containing
the maximum number of definitiens of unique
variables,

There can be a number of paths from s to a
given node n ¢ N. Each path might contain a
different number of unique variable definitions
that are predecessors of n, and these definitions
can also be referenced at the node labeled n.
Choose the path, from s to n, that contains maximum
number of definitions of unique variables.
Trivially, the number of unique definitions in this
path sets the upper limit for the number of
variable definitions which can be referenced at the
given node n.

Property 8. The maximum indegree of dependency
edges for any node n ¢ N in a GPG 1s given by the
expreasion:

P, ¥ Py,

where

Pp = (number of predecessor predicate nodes + 1),
and

Py = number of predecessor definition nodes
representing unique varilables present in the
path from 3 to n contalning highest number of
variables defined

The result follows directly from the property 6
and property 7.

Property 9. The maximum dependency outdegree of
any node n € Np is the number of successor nodes
m £ N along the control {low edges.

A variable definition given at a node n ¢ Np
can be referenced by any successor node m € N. As
a result, there can be a dependency edge from n to
any m if (1) the definition at n is live at node m
(11) there exists a control flow path from n to m
and (1ii) the expression associated with the node m
1s a funection of the variable set by the definitiocn
agssoclated with the node n. It follows that the
maximum dependency outdegree for any node n e Np is
achieved when evaluation of all the expressions
asgocliated with successor nodes m £ N depends on
the definition at n e Np*

Property 10. The maximum number of dependency
edges 1n a GPG 1s given by the

expression:

I (maximum indegrees of dependency edges}
for each
m £ N.

The maximum indegree of dependency edges for
any node m ¢ N can be obtained by property 8. This
formula sets an upper limit on the number of
dependency edges based on the control flow.

5. Transformation Of A GPG Into CFG And DDG

Since both the contrel flow as well as data
dependency information are included in the GPG,
straightforward transformations can be used to
convert a GPG representation of a program into a
control flow graph and/or a data dependency graph.
The conversion demenstrates that the GPG can be
used to generate complexity measures based on the
CFG and the DDG.

5.1. Conversion of a GPG into a CFG

In order to transfortm a GPG into a CFG, the

following steps are performed.

(1) Delete all the dependency edges denoted by
dotted lines.

(2) Combine each set of nodes that represents a
basic block inte a single node.

In a flow graph, each node generally represents
a basic block. However, after step 1 of the above
tranaformation, one c¢btains a control flow graph
where each node refers to an individual statement
of the source program. It is therefore required to
condenae each appropriate set of nodes into a
single node, so that after step 2 of the
tranaformation the given GPG 1s transformed into a
standard control flow graph.

5.2. Converaion of a GPG intec a DDG

A DDG representation of a program conaiats of
nodes representing only variable definitions and
edges denoting possible data dependencies. A
dependency can be (1) direct dependency that can be
determined by evaluating an individual statement or
(2) a control dependency that 1a obtained from the
flow of control. HNote that direct dependenciles
have already been incorporated into the GPG.
Therefore, in order to convert a GPG intc a
correaponding DDG representation of a given
program, the following algorithm can be used.

Procedure GPG-TO-DDG (G);

For each p e Np, determine the set {d | d e Np
and d is in the Range of p}i

Delete all the control flow edges in the graph,
tH

For each predicate p € Np
Do;
Find the dependency edges (qi,p) of p,
for q4 e Np;

For each qy, add the edge {q4,d) for all
d & Np that 1ie within the range of p;

Delete the predicate node p together with
all the edges (qy,p) of p

for q¢ ¢ Np;

End;

The resulting graph, G', is a DDG.

6. Applications Of The GPG

Our current work has centered on the use of the
GPG as an analytical teool for studying software
structure. As our work moves from an analytical to
an empirical perspective, we see the GPG as an
ideal implementation model for the development of
software structure and measurement toola. The GPG
can be used to represent programs written in
imperative languages. We can construct a set of
software tools based on the GPG to analyze control
structure, data dependency satructure, and the
control/dependency interface. We alsoc expect to
find applications of the GPG in studies of
interconnection ccmplexity. Software tools can be
designed to compute propcsed measures from
arbitrary GPG's. Since the structural content of
the original source is more completely captured by
its GPG representation than by the control flow
graph or the data dependency graph independently,
most of the new structural abstractions and
measures can be applied to the GPG representation.

There are pragmatic advantages of basing
gsoftware structure and measurement tools on an
abstract representation rather than the actual
source code., HResearchers can develop one set of
tools that analyze the abstract representationm.
These tools can be used to study programs written
in any language for which a GPG construction
program has been implemented. Only the GPG
construction program would have to be implemented
individually for each language. Industry has been
reluctant to release programs to software structure
and measures researchers because of proprietary and
copyright concerns. Proposala for developing &
standardized reduced form of a program for software
complexity research purposes have recently appeared
in the literature [Harrison 85]. We feel that the
GPG is a suitable candidate. Industry should be
leas reluctant to share valuable data when the
software is converted into its abstract GPG
representation before release to the research
community.

7. Conclusions

The results presented in this paper represent
the state of our ongoing research examining the
statie structural relationship between control flow
and data dependencies. The generalized program
graph is an abstraotlon that has proven useful for
the analysis. In additien, the GPG may form a
basis of an implementation model for the
development of software structure and measurement
tools.

We have not proposed any new software measures.
But we feel that the GPG will aid in the effort to
isolate quantifiable software properties that can
be examined in a rigorous manner.

59

References

(Bieman B4] J.M. Bleman, Measuring Software Data
Dependency Complexity, Ph.D. Dissertation,
Computer Sclence Dept., Unlv. of Louisiana,
Lafayette, Louisiana, 1984,

[Bieman 85] J.M. Bieman and W. Edwards,
"Experimental Evaluation of the Data
Dependency Graph For Use in Measuring Software
Clarity", Proc. of the 18th Hawaii
International Conference on Systems Sciences,
1985, pp. 271-276.

[Evangelist 84] M. Evangelist, "An analysis of
control flow complexity"™, COMPSAC 1984, pp.
388-396.

[Harrisen 81] W.A. Harrison and K.I. Magel, "A
complexity measure based on nesting level™, ACM
SIGPLAN Notices, Vol. 16, No. 3, March 1981, pp.

3‘7 .

[Harrison 85] W. Harrison and C. Cook, "A Method
of Sharing Industrial Software Complexity Data",
ACM SIGPLAN Notices, Veol. 20, No. 2, February
1985, pp. 32-51.

[Hecht 77] M.S. Hecht, Flow Analysis of Computer
Programs, Elsevier North-Holland, New York,
1977.

[Howatt B5] J.W. Howatt and A.L. Baker, A& New
Perspective on Measuring Control Flow
Complexity, Technical Report 85-1, Dept. of
Computer Sclence, Iowa State University, 1985.

[McCabe 76] T.J. MeCabe, "A Complexity Measure",
IEEE Trans. Sofiware Engineering, Vol. SE-2,
December 1976, pp. 308-320.

[Oviedo 80] E.I. Oviedo, "Control flow, data flow
and program complexity", COMPSAC 1980, pp.
146152,

[Weiser B2] M. Welser, "Programmers Use Slices
When Debugging", Communications of the ACM,
Vol. 25, No. 7, July 1982, pp. BEG-R52.

[Woodward 7¢] M. Woodward, M. Hennell, and D.
Hedley, "A measure of control flow ecomplexity in
program text", IEEE Trans. Software Engineering,
Vol. SE-5, January 1979, pp. U45-50.

