- roe, COMPSTL B

The Software Process Model

David A Gustafson®, Austin C Melton®, Ying-Chi Chen®, Albent L Baker**, and James M Bieman®*

*Depanment of Computing and Information Sciences, Kansas State University, Manhattan, Kansas 66508,
(913) 532-6350 and **Department of Computer Science, lowa State University, Ames, lowa 50011

Managing software development is a difficult
process. The waterfall model/approach and the
iterative development model/approach have been used
fo both visualize the process and to control the
development. A model that is independent of the
development approach is needed. Such a model
should also help in understanding soitware
development in general.

A practical approach to modeling software
development is to model the evolution of the full set of
documents produced in a software project. We define
such a software process model, SPM. The SPM
provides a framework for measuring, analyzing, and
understanding the sofiware development process. 1t is
a general model that should be usable for software
development using any development approach. We
use the model to formally characterize research in
software measures and metrics. Data obtained {rom
two software projects are presented in the SPM format.

Introduction

Ultimately, the concern of software engineers
must be for the product of the software development
process. And the product is more than the executable
implementation. The product is a set of documents that
may include a requirements document, specifications
documeants, design documents, implementation
documents, testing documents, and other forms of
extarnal documentation. We would like to understand
the actual, current processes used and the procasses
that can be used to produce these products.

A realistic and general model is essential for
understanding the software development process. Two
prevelant models are the waterfall model [9] and the
incremental rafinement model [11] {(which might also be
called the "iterative refinemeant” modsl or the "step-wise
refinemant” model). While both of these models have
contributed to our undersianding of the software
development process, they possess common and
general deficiencies:

CH2611-2/88/0000/0003501.00 © 1988 IEEE

1) The models prescribe a sequential order of
document development.

2) The models focus on final documeants.

3) They do not model the evolution of all the
documents produced.

We define a product based model of the software
development process that we call the Software Project
Model, SPM. This model does not have the
deficiencies listed above and accounts for the
beneficial fealures of the existing models.

Another key ingredient to understanding the
software development process is the ability to measure
both the process and product. The need for measuras
to manage the process and product is clearly evident
8. The results to-date in the area of software
measures have hardly satiated this need. While there
are NUMercus reasons
why measures research has not produced more usable
results, one major reason is that there has been no
general framework for the definition and evaluation of
proposed measures. We find that the SPM provides
such a framework. It accounts for measures of the
process, which we refer 1o as "process measures” or
"process data", and measures of the product, which we
refer to as "software measurss”. For instance, the
framework provided by the SPM leads to a clear and
precise distinction between a software measure and a
software matric (this issue is discussed in more detail
later).

The SPM has a wide range of applicability in
software development environments, especially in
areas that relate distingt documents or relate
documents at different poinis in their evolution. Most
expert systems for software enginearing fit into these
categories [2,4,10,12]. For instance, a sophisticated
environment of the future might help maintain the
relationship "is correct with respect to” between a
specification document and an implementation
document.

This paper includes a demonstration of the SPM's
affectiveness as a framework for software measures.

In the next section we analyze the two pravalent
models and carefully define the SPM. We use the SPM
in the third section as a framework for measures of the
software process and product.

The Software Project Model

While there are a number of distinctly diiferent
paradigms for software development [5], the waterfall
and incremental refinement modals mentioned in the
first section are representative of views held by many
software engineers. The waterfall model (9], depicted
simply in Figure1, added to professional understanding
of the software development process by

1} making axplicit that the software product includes
distinct documents, and

2) suggesling a logical order of activities related to
producing each document {we ought not produce a
detailed design document after having completed the
implementation)

roquire=
ments

design

Figure 1 : A Simple View of the Waterfall Model

But there Is now general consensus that software
development is not quite such a simplistic, sequential
process. There Is, in practice, a high degree of
parallelism in the production of sofiware documents
involving both formal and informal communication. In
addition, developers use information gleaned from
early efforts on a document as they work toward a
"final" version of that document. The waterfall model
does not account for this type of information. It only
reflects that, for instance, the information in the
specification document is used to produce the detailed
design.

The other model mentioned in the first section
addresses the second deficiency of the waterfall mode!.
The incremantal refinement model [11] is based on the
PLEASE programming environment in which
successive versions of a program from the first formal
specification through the final production version are
recorded in the same document,

The sarly specifications often use operators {eg,
\exists -- there exists") that are usually not efficient
enough to be used in the final production system. This
model clearly supports a stranger relationship between
documents as they are developed than does the
wateriall model. However, the incremental refinement
model sutfers from
other deficiencies:

1) The modsl does not encompass all the
documents produced. It fails 1o account for those
documents that are expressed informally, e.g., initial
requirements and test documents.

2) The model still implies an inherently sequential
approach to software development.

The waterfall model has one additional
characteristic which we believe detracts from its
generality. It is focused primarily on the process of
software development. The iterative refinement model
suffers less from this drawback, but the SPM model
presenied in the last part of this section is developed
even more from the perspactive of the software product.
While we acknowledge that this is a question of
perspective and it is the entire sysiem of process and
product that we wish to model, the product perspective
offers greater possiblities for management and
understanding.

The SPM is an absiraction of the aclivities and
products of actual software development. The model
focuses on evolving products of a software project and
the relationships between products. Each of the
products can be described as a document.

We assume that development can take place in
paraliel; therefore several of the documents may be
under development simultaneously. The SPM does
not prescribe an order of activities and the products
need not be named. Thus, the SPM may be applied to
a variety of lifecycle schemes.

The development of a sofiware system is the
process of transforrning representations of a system.
Each "phase” of the software development process
produces a distinct representation of the systam. A
representation is a document and each document
provides a unique view of the system. It follows that
these alternative views are of different levels of
abstraction and precision, and the documents that

represent each view should be identitably distinct.
Using the model, each document is either written in a
different language or the documents are identifiable in
somsa other manner. Thus, a requirements document
can be distinguished from a specification document; a
specification can be distinguished from a design; a
design can be distinguished from an implementation;
and so on.

We view software development as the process of
refining a set of documents. The process is time
dependent and therstfore a real-time clock is a critical
component of the model. The following definitions
formally characterize the SPM.

Definition : The Software Project Model (SPM) is a set
of document histories, SPM = { Hq, Ha, ..., Hy},

where each H; is a history of the different versions
of ong document.

Definition . A document history H; is a tree whose
nodes are versions of documents, and H; = (V}, E;,
r) where

V; is a set of document versions of type i,
By is a set of ordered pairs of the form (a,b),

a, b € Vj, which represent transitions from
one version in Vj to another, and
tj is the root of the H tree or the initial version.

A tree is used {o represent a document history to
allow the medeling of the development of alternative
final versions. Consider the development of a system
that is to run alternatively on hardware produced by
several different vendors. Such a system may require
alternative specifications, designs, and
implementations for each machine. The tree form of a
document history allows us to model such alternatives.

Definition : A document version dj(j) Vj is an ordered
pair dj(j) = <d'i(j), tdi(f) >, where d'j(j) consists of
the text of the document varsion, and td;(j) is a real

time stamp which represents the completion
date/time for d'i{j).

The time stamp can be augmented with additional
management data such as the publication date, the
time/date that the document version was released to
teams working on other documents, or the number of
person/hours used o develop the document version.
This allows the calculation of a wide range of process
measures such as the the number of person-hours
used to develop the document version.

The granularity of a document history is arbitrary
and depends upon the needs of a particular project. A
new version may be created when teams report
completion of a version or afier a formal version
approval process. Or one may consider the document
fo be a new version each time the online version is
edited.

The use of SPM to dascribe a possible software
project is illustrated in figure 2. This depicis an
idealized daveiopment that went through two passes
on the documentation.

=
" -
=
E 44
-
§ =
4 = E# v
e ==

Figure 2 : The Software Prcject Model (SPM) for an
idealized development

Because of the inclusion of a real-time stamp, we
can use the model for temporal analyses, including an
analysis of the possible dependencies belwean
documents. For instance, at each time t in the
development of a project we define a frontier(t) to be
the set of the most recent varsions of documents in the
SPM with completion prior to time t.

Dafinition : Given a SPM, the frontler(t) is the set of
-document versions in the SPM determined by
1} deleting from the SPM all document versions
di{i} and edges into these versions, where td(j) > t,

and
2} including the leaf nodes from the resulting SPM
in the frontier(t).

Definition : For any document version dj(j) we define a
dependency frontler(d;{])) which consists of the
frontier(td;(})).

The study of the SPM frontiers will ba especially
helpful in analyzing the influence one phase of a
software development activity may have on ancther.

The SPM shows the patterns of software product
davelopment in much greater detail than the waterfall
model and establishes the same correspondence
between specifications and implementation as the
iterative refinement model. In addition, the SPM
models parallel activities and provides a complete
project history.

The SPM can form the basis for describing a varisty of
relations between products. One such useful family of
relations are the "correct with respect to” (CWRT)
relations. A boolean result is expected from a CWRT
relation which answers a gquestion like "is the most
recent version of the implementation corract with

respect to the most recent version of the
specifications?” CWRT relations take two objects
which may be document versions in the same or in
ditferent document histories. The CWRT relations are
examples of the general applicability of the SPM.

Definition : For any document version dj(j) we define a
dependency frontier(d;{l)} which consists of the
frontier(id;(j)).

The study of the SPM frontiers will be especially
helpful in analyzing the influence one phase of a
software development activity may have on another.

The SPM shows the patterns of software product
development in much greater detail than the waterfall
model and establishes the same correspondence
between specifications and implementation as the
itarative refinement model. In addition, the SPM
models parallel activities and provides a complete
project history.

The SPM can form the basis for describing a variety of
relations between products. One such uselul family of
relations are the "correct with respect to” (CWRT)
relations. A boolean result is expected from a CWRT
ralation which answers a quastion like "is the most

4
772 W
LE.5.)
3
Time EEE]
‘“‘""""; - e = =
- =
rm = =
' = =
|
=3

recent version of the implementation correct with
respect to the most recent version of the
specifications?” CWRT relations tfake two objects
which may be document versions in the same or in
different document histories. The CWRT relations are
examples of the genegral applicability of the SPM.

Examples of Software Process Models

Below are two examples (figure 3 and figure 4) of
SPM diagrams drawn for actual projects. The projects
were student projects written in a software engineering
course.

The documents included in this project were a
statement of work (SOW), a dala flow diagram (DFD),
an entity-relation-attribute specitcation of the data flow
(ERA)}, a specification of the first phase implemeantation
(P0), a specification of inputs for project
walkthroughs{W/l), a hierarchy diagram (HD), a textual
description of the module interconnections (HS}) , a test
plan (TEST) and the source code (CODE). The
documents were required at particular times but were
also required to be revised whenever errors or
inconsistencies were discovered. The dates indicate
when the documents were turned in for evaluation.

n'n's =
= &3

B [

Sol) DFD ERA PO

KD HS TEST CODE

Figure 3 : SPM diagram for development A

The development process depicted in figure 3
was orderly. The students revised prior documents 1o
ensure consisiency. Although there appears to be
many versions of documents, the development was
relatively stable. Figure 4 shows another development
effort.

The development effort depicted in figure 4 shows
fewer documents and fewer varsions of the documenis.

A current research eftort is to develop quantitative
measures and metrics 1o assess the development
procass. Although there are many possible numbers
that can be calculated from the data on these diagrams,
it is important to develop a good foundation [1, 3] for
any such measure or metric. The next section
describes a framework for these measures and metrics.

A Framework for Software Measurements

The SPM provides a framework for quantifying the
software process and software products. The model
helps clarify the distinction between the products of
software development and the development process.
Each node in the SPM represents the text of a
document version, the completion time, and possibly
additional process data. We find that the published
approaches to quantifying source code structure can
be described in terms of the SPM. McCabe's
cyclomatic number [7] and Halstead's soltware science
effort [6] are examples of measures of a version of an
implementation document -- one node in a document
history.

In an effort to make software engineering
terminology match terminology from the physical
sciences and mathematics, we distinguish between a
measure and a metric. A metric traditionally refers to a
distance function and determines how two objects diffar
in the measurement of a specified property. To be
consistent with the traditional meaning of "metric", we
will use the term "metric* to be a function with two
arguments that produces a real-number result. The
tarm "measure” will be used to describe a function with
one argument. We first give the mathamatical definition
of a metric.

definition : Let X be a set, R be the set of real numbers,

and let f be a function where f: X x X->» R. The
function f is a metric on X, and X is a metric space if
f satisfies the following properties, where x e X, y e
X, andzeX:

1) f(xx)=0

2) f(x,y)=0 ifandonlyifx =y

3) 1{x.y) = f{y.x)

4) f(x,2) s i(xy) +H(y,2)

Dafinition : The function f: XxX->%R isa
pseudo-metric if f satisfies properties 1, 3, and 4.

Thus, oneg may view a metric f: X x X-> R as a
tunction giving the difference or distance between two
points. For example, if X is a set of programs, a & X,
and b e X, then f(a,b) may represent the difference with
respect io some property of the two programs a and b.

4
on = =
3 ==
— =
Time
(months)
) = E=
=
1
OFD ERA Hierarchy HS Source Code

Figure 4 : SPM diagram for development B

Most defined software measures, including the
software science values and McCabe's cyclomatic
number, do not measure a difference belween two
programs. Thus we prefer to use the term "software
measures” for such quantifiers which take only one
argument.

Definition : Let V be a set of document versions. A
function f where f: V-» R js a software measure.

Definition : A software metric is a metric with a metric
space consisting of a set of document versions. A
software pseudo-metric is a pseudo-metric over a
domain consisting of a set of document versions.

A simple example of a software pseudo-metric is
the absolute value of the difference in the number of
statements in two versions of a source program.

Consider a function m thal compares the number of
predicates in two source programs a and b. If version a
and b have the same number of predicates m{a,b)=0
even when a = b. Theretore m is a software
pseudo-metric. In fact, all published software
measures can be used to define analogous
pseudo-metrics.

We can also define measures whose inputs are
sets of documents or entire document histories.

Detfinition : Let H be a specified set of document
histories. A document measure is a function f: H->

R .

For example, a document measure could be the
average number of changes between the different
versions of a document. The changes can be defined in
various ways. As an example, we can define changes
in terms of the number of operations in a delta of the
source code control system (SCCS).

Dafinition . A document metric is a metric with a metric
space consisting of a set of document histories. A
document pseudo-metric is a pseudo-metric over a
domain consisling of a set of document histories.

The absolute value of the difference between the
number of specification versions and the number of
versions of the implementation is a document
pseudo-metric.

We can also take measurementis of an entire
project.

Definition : Let P be a set of SPMs for a number of
projects. A project measure is a function f : P -» R,

An example of a project measure would be
average length of time between document versions. It
would map the entire SPM to one number that
represents how often the documents were updated.

Definition : A project metric is a metric with a matric
space consisting of a set of SPMs. A project
pseudo-metric is a pseudo-metric over a domain
consisting of a set of SPMs.

An example of a project pseudo-metric would be
the difference between the average length of time
between document versions for project A and for
project B.

As mentioned previously, if m is a measure with
domain D we can define a pseudo-metric pm{dy,do) =

m{d4) - m{do}|, where d4 £ D and d5 e D. Howevar, a

metric can also be defined independently of a
measure. One example is the praviously mentioned
number of changes between two document versions.

Some quantitative comparisons between pairs of
objects are not metrics or pseudo-metrics. Consider the
following two examples:

1) Often we want to measura the direction of
change. For example, we might measure the growth in
the size of a document. A pseudo-metric would only
show the magnitude of the change and not distinguish
between an increase or a decrease in the size. We
might describe a "metri¢” that can show diraction as a
vector.

2) We may want to determine how many abstract
operations in a version of a specification are correctly
implemented in a version of an implementation.
Consider such a function si: S x | ->%R, where Sis the
set of specilicalion versions and I is the sst of
implementation versions. In this case, if we have a
value for si{x,y), then clearly si{y,x) is not defined and si
is not a pseudo-metric.

Given this more carefully defined environment of
measures, metrics, and pseudo-metrics based on the
SPM, we can extend this rigor into the typical
paradigm for software complexity measures research.

Conclusions

The SPM is capable of modeling all software
development efforts. The SPM allows visual evaluation
of the effort. This visual aspect will help in analyzing
software development.

The proposed model also provides the framework
to allow the development of measures and maetrics.
Further, it is clear that this model with its vast
possibilities for various measures and metrics opens a
whole new perspective on the areas of software
complexity measures and metrics. In addition, the SPM
pravides a formal framework for controlling and
analyzing these measures and metrics. These
measures and metrics will help to compare different
development efforts in terms of stability, rate of
progress and possibly quality. We fesl that this
approach has tremendous possibilities as a software
management tool.

bibliegraphy

{1} Albert Baker, James Bieman, David Gustafson, and
Austin Melton, "Modeling and Measuring the
Software Development Process", Proc HICCS
1987.

[2] Robert Balzer, " A 15 year perspective on automatic
programming”, IEEE Trans. Software Engineering,
SE-11 {11} , pp1257-1268, November 1985.

[3] James Bieman, Albert Baker, Paul Clites, David
Gustafson, and Austin Melton, "A Standard
Representation of Imperative Language Programs
for Data Collection and Software Measures
Specification®, Journal of Systems and Software ,
8(1) pp13-37 (Jan1988).

{4] Stephen Fickas, "Automating the transformational
development of software”, IEEE Trans. Software
Engineering, SE-11 (11), pp1268-1277, November
1985,

[5] Brent Hailpern, "Multiparadigm languages and
environments”, [EEE Software, 3 (1), pps-9,
January 1986,

[6] M. H. Halstead, Elements of Software Sclence,
Elsevier, New York, 1977.

[7] T. J. McCabe, "A complexity measure”, IEEE Trans.
Software Engineering, SE-2 (4), pp308-320, 1976.

[8] C. V. Ramamoorthy, Atul Prakash, and Wei-Tek Tsai,
"Software engineering”, Computer, 17(10),
pp191-210, October 1984.

(2] Martin L. Shooman, Software Engineering: Deslign,
Reliability and Management, McGraw-Hill Book
Company, 1983.

[10] Douglas R. Smith, Gordon B. Kotik, and Stephen J.
Waestfold, "Research on knowledge-based sofiware
environments at kestrel institute®, IEEE Trans.
Software Engineering, SE-11 (11}, pp1278-1295,
November 1985.

[11] Robert B. Terwilliger and Roy H. Campball,
"Please: predicate logic based executable
specifications”, Proceedings of the ACM Computer
Sclence Conference, ACM, February 1986.

[12] Richard C. Waters, "The programmer's apprentice:
a session with kbemacs", IEEE Trans. Software
Engineering, SE-11 (11), pp1296-1320, November
1985.

