4SS

rroc

195

Lispflows:
Specification of a Model for Functional Programs

David L. Coleman

Albert L. Baker!

James M. Bieman

coleman@atanasofl.cs.iastate.edu bakerfiatanasoff.cs.instate.edu hieman®atanasoff.cs.iastate.edu

Department of Computer Science, lowa State University, Ames, Iowa 50011, (515) 294-4377

Abstract

Software development Lools and measures are often
based on particular models of programs. For example,
flowgraphs serve as a model of imperative programs.
There is no analogous, commonly accepled model of
functional programs.

The benefits of models of programs are clear, Flow-
grapha serve as the basis for numerous tools, e.g., test-
ing environments that monitor structural coverage cri-
teria. Flowgraphs are also the basis for numerous mea-
sures of control siructure, data dependency, and pro-
gram size.

The increased use of lunclional languages moti-
vates development of a model for the functional paradigm.
LispAows model functional programs in the same sense
thal the Rowgraphs model imperative programs.

Lispflows are based on dataflow graphs. We define
lispflow as an abstraci data type (specifieally as an
abstract ohject), using abstract model specifications.
A mapping from a full dialect of Pure LISP to lispfows
is described. Additionally, we define several propertics
on lispflows that are {looscly) analogous to existing
properties for flowgraphs

Lispflows lend ingight into the recursive structure
and functiona! composition of functional programa.
Out inilial comparisons suggest that lispflows may be
a generalization of the models used for imperative pro-
grams and may thus serve as a basis for defining Lools
and measutes applicable to a bruad category of pro-
gramming paradigms.

1 Introduction

In this paper we define and provide example uses of a dataflow
model of functional language programs. This model, a “lisp-
fluw”, represents functional programs in much the same way
flowgraphs model imperative programs. The lispflow model
provides insight into the fundamental structure of functional
language programs. Thus it may be used to define soft-
ware tools and software measures for functional language pro-
grams, analogous to similar fluwgraph-based tools fur imper-
ative language programs, We define several struclures based
on the lispflow medel of functional programs. The defined
structures demonstrate the utility of the dataflow model.
We consider only pure functinmal programs. A pure fune-
tional program is a composition of function calls without side
effects. The lispflow model 15 defined fur a side effect free

YAddress Correspondence to Dr. Albert L. Bukee, Degartment of
Compuler Science, lowa State University, Ames, 1A, 50011,

0073-1129/89/0000/0105801.00 © 1989 IEEE

1035

LISP subset (without sequencing of expressions or iterative
constructs?). In the conclusion we address the generalization
of the lispflow madel to production dialects of LISP.

Since the use of functional languages for commercial and
large scale-soft ware projects is increasing, and since the func-
tional paradigm has expressive advantages for software sys
tem specification and design [1], a general, well-defined model
for the functional paradigm has timely significance, The pro-
fessioual community will only be able to make effective use
of these functional specification and design techniques when
CASE tools to support the functional paradigm are readily
available. Flowgraphs for the imperative paradigm help sup-
port design and analysis of imperative software. Lispfows
can serve an analogous role for the functional paradigm.

Flowgraphs for imperative language programs also serve
a variety of other roles, including code optimization strate-
gies, structural testing criteria, and software measures. The
lispflow model of functional language programs can be used
to define analogous tools and suftware measures, These tools
and measures can also be vsed 1o manage and analyze soft
ware develupment based on the functional paradigm

The Howgraph model of imperative language programs
and the lispflow model of functional language programs are
necessarily based on the static {compile-time) structure of
programs. The treatment of code as data, i.e., quote, eval,
apply, and funcall in LISP, is important for AL appli-
cations, but is problematic for static representations. The
lispflow model defined in Section 4 addresses the code as data
feature of functional languages. Such features in imperalive
languages are not handled by the widely used flowgraph mod-
els.

Several fundamental differences between the functional
and imperative paradigms prevent flowgraphs from being ef-
fective models of functional language programa:

1. Functional programs du not consist of sequentially ex-
ecuted commands, but rather use patlerns of nested
function applications. The result of a nested function
is used immediately by the function it is nested within.
Thus the flow in a functional langnage program is of val-
ues in expressions, not of control between commands.

2. Pure functional languages lack the assignment operator
and parameter passage hy reference.

3. lmperative programs use conditional transfer of con-
trol; the value of a predicate in the current environ-

?For a detailed development of the specific subset of LISP, see [5].

ment determines which statemeat is to be executed
next. On the other hand, a functional language pro-
gram uses conditional expressions to determine which
function value to return. As we shall see in Section
J, composition of functions is represented as incoming
flows, Thus a lispflow conditional node has several in-
cuming edges and produces a single answer edge. A
flowgraph conditional node has oue or more incoming
control edges and passes control un to one of several
outgoing edges.

4. Pure functional languages Iack an explicit functional
iterative construct. In a functional language program
we are restricted to the use of recursion for any repet-
itive process. Since the lispflow model represents fance-
tional language programs at the unit level, there can be
no loops in the dataflow graph for a particular defined
function.

A briel introduetion 1o dataflow prugrams as oniginally
described by Dennis (6] is contained in Section 2. In Sec-
tion 3 we give an informal example of a lispflow. In Section
1 we give a careful definition of lispllow. In Section 5 we
deseribe the algerithm for generating the lispflow representa-
tion of a pure LISP program. Several structural properties of
lispflows are defined in Section 6. The analogy with features
of flowgraphs is described, where appropriate. As part of our
conclusions in Section 7 we speculate on the uscfulness of the
dataflow appruach to modeling more general dialects of LISP
and comment on other applicaliuns,

2 Comments on Dataflow

The basic concepts of the dataflow paradignn are sufficiently
important for the lispflow model that a few brief comments
may be helpful. There are numercus variations on the dataflow
paradigm and a similarly large number of applications. Qne
application is in the software specification technique com-
mouly referred to as “structured analysis”[11]. An integral
part of such a specification is a hierarchy of diagrams which
depict the flow of information in the corresponding executable
system. While this application does not utilize the notion of

cuntrol used in dataflow programs, it does serve 1o emphasize
a major feature of dataflow -
(or data),

The application of the dataflow paradigin in a program-
ming language is due to Dennis|6]. Dennis depicts a dataflow
pragram as a directed graph where the edges represent pipe-
lines along which information Aows and the nodes represent
teansformations of incoming Aows into outgoing lows. When
sulficient incoming flows have reached a node and Uere is
currently no outgoing flow, the node is said Lo fire. When
a node fires, it consumes the incoming flows and produces
an outgoing flow. Firing rules for each type of node describe
when sullicient incoming flows are present

Dennis uses a form of heap to allow fur structured value
flows. The actual tokens Howing on the edges in Dennis’
language are pointers to nodes in Lthe heap, The heap is a
finite, acyclic, dirceted graph having one or more root nodes.
This heap representation of structured data can be used to

the movement of information

106

model the available LISP data types |5

Dennis distinguishes two types of infurmation flows. One
type is a flow that carries data. Data flows carry tukens that
represent cither an elementary or structured value. The uther
type of flow carries control information, Conlral infornintion
is of type buulean., Edges in Dennis’ dataflow Janguage that
represent control information flows are identified by open cir-
cles and cpen arrows. Edges that represent data flows are
identificd by filled circles and filled arrows. We retain this
openfelused circle convention in the lispflow model,

The nodes in Dennis’ dataflow language are either called
links or actors. A link node simply produces multiple eopies
of a single incoming Aow. Deanis defines a number of dif-
ferent actor nodes, e.g., an uperator actur which produces a
single data flow, a decider actor which produces control in-
formation, and various constructor and sclecior actors for
structured data flows, For a complete list of the Dennis
dataflow operators needed to represent LISP programs, see
{8]. This particular set of datallow nodes is theoretically ad-
equate for modeling Pure LISP programs. However, the e
sulting dataflow representations are cuinbersome, and hence
not very expressive from the standpuint of the human reader.
The lispflow model deseribed in Scctions 3 and 4 uses the ba-
sic comeepls of dataflow in a more expressive model of fune.
tional programs.

3 An Informal Lispflow Example

A simple example illustrates the basic concepts of the lispllow
miwndel of functional prograns and serves as a preface tu the
mure formal definition appearing m Scction 4, The LISP
funciion Member appearing in Figure 1 returns t (true) il
the alom A is a member of the list of atoms Lat, and nil
otherwise

{defun Member [Lat A)
{cond ((null Lat) uil)
({eql (car Lat) A) t)
(t (Member (edr Lat) A))

Figure 1: Simple LISP Function Member

A lispnow models an entire LISP program which is com
posed ol functions like Member, Rach function in a LISP pro
gram is modeled by a single FuneGraph element of a lispllow.
The FuncGraph for the stmple LISI function Member ap
pears as Figure 2,

FPuncGraphs are analogous 1o Dennis® datafiow programs
in that the edges in a FuncGraph represent paths on which
data values flow. The nodes in the example FuncGraph la-
beled U and 2 represent sources of the parameter values Lat
and A, respectively. “NORMAL" refers Lo Lhe type of LISP
parameter and is not significant for this example. The node
tabeled Member at the bottom of the FuncGraph represents
the return value of the function Member. The remainder of
the FuncGraph models the body of the LISP funetion Mem-
ber,

Since the bady of the function is a single LISP conditional
operatur cond, first consider the special control node 12 in
Figure 2. The sequence of cells 1, 2, and 3 in the cond
control node represent the three clauses of the cond operator
appearing in Member. The edge intoeach el that terminates
in an open cirele represents the predicate of the corresponding
clause. We refer to these as p-use edges. For example the
predicate of the first clause of the cond vperator in Member

is {null Lat). This predicate is modeled by the path from
the parameter node 1 through the valve node 3 terminating

in the p-use edge into cell 1 of node 12.

12¢0nd celll c112 c113 def

Member

Figure 2: FuncGraph for Function Member

The edge into each cell of a control node that terminales
in a closed eircle represents the return value associated with
the corresponding clause. We refer Lo Lhese ag d-use edges.
The return value of the frst clause of the cond is just nil.
"This is represented by the d-use edge from the value node 6
to cell 1 in node 12. Note that the value that flows out of a
cond control node will be the value on the d-use cdge into
cell i where the value on the p-use edge into cell £ is non-nil,
and, for every §, ¥ € j < i, the value un the p-use edge into
cell j is nil. This simply models the semantics of LISI? cuntrol
operators like cond.

1n Section 6 we use Lhe distinction between p-use and
d-use edges Lo develop certain structural properties of Fune
Graphs based on paths. A path that terminates in a p-use
edge is called a predicate path. Paths that do not tesminate
in p-use cdges must terminate at the tesult node. We call
these value paths, These notions are developed more fully in
Section 6.

4 Lispflows

In this Section we provide a formal definition of the lispflow
model of syntactically carrect Pure LISP programs. Lispflow
is defined as an abstract data type domain using abstract
model specifications|2]. The domain of an abstract data type
is a collection of objects defined by a svurce set and an in-
variant over the source set, The source set is presented as a

107

series of type definitions that describe the structural nature
of a lispflow. (The abstract model specificativn language we
use has primilive structured types finite set, finite sequence,
and n-tuple(2] analogous to othet specification languages like
VDM(9].) Any object with the structure of the source set
that satisfies the invariant is a valid instance of a lispflow.

A lispflow is a collection of dataflow-like graphs. Nodes of
these graphs can represent Pure LISP operators, function ap-
plications, or parameter references. Each edge in a graph rep-
resents the flow of an argument value to the node representing
the operator to which the argument is applied. Nodes rep-
resenting function application may also require a functional
form argument.

The lispflaw modet is based on the following definition
of a Pure LISP program: a Pure LISP program is a sct of
Pure LISP function definitions which may not refer to other
function definitions not in the set. Thus a Pure LISP program
is closed under the “ealls” relation as far as we can stalically
determine.

Type Definition 1 formally defines a lispflow

Type Definition 1

LISPFLOW = set of FuncGraph;

Each FuncGraph in a lispflow models one Pure LISP func-
tion definition. A FuncGraph is an acyclic directed graph
that represents a datafiow mapping from an ordered sequence
of parameters to a result. The nodes of a FuncGraph repre-
sent Pure LISP parameters, aperators, constants, and appli-
cation of functional forms.

Each parameter node in a FuncGraph behaves like one
of Dennis’ dataflow link nodes. An edge from a parameter
node goes Lo every node that represents an operalor or a
function application that references that formal parameter®.
Edges representing Pure LISP compuosilion go from these op-
erator and function application nodes to other operator and
function application nodes until a final edge connects to the
FuncGraph's result node. By distinguishing these operator
and function application nodes as specific node types, we can
characterize the movement aund use of data through a Pure
LISP function.

We classify nodes in a FuncGraph as either parameter
nodes, application nodes, value nodes, or control nodes. We
also declare a special node called a result node. Type Def-
inition 2 defines a FuncGraph as a 6-tuple. The Funcl/d of
a FuncGraph identifies the FuneGraph and the result node.
The result node is the only node with out-degree 0 and in-
degree 1.

Type Definition 2

FuncGraph = 6-tuple{ Funeld:ldType,
Paramelers:

sequence of ParamNode,
Applys:ser of ApplyNode,
Valuea:set of ValueNode,
Controls:set of ControlNuode,
Edges:set of EdgeType);

?We assume every formal paramcter is referenced at least once in the
body of the function definition.

We {requently refer to the example given in Figures 3 and
4. The LISP function in Figure 3 evaluates a list represen-
tation of a prefix arithmetic expression. The corresponding
FuncGraph appears as Figure 4. Note that the FuncGraph
for PrefixEval contains a single parameter node and that the
result node is labeled with the function name,

For clarity in the following discussion, we refer 10 an edge
as an argument edge if that edge is in-coming to an applica-
tion, value, or cantrol node. Likewise, we refer to an edge
as a result edge if that edge is out-going from an application,
value, or control node. An edge is then an argument or result
with respectl Lo a particular node.

The parameter and application nodes represent the in-
terface between defined functions in a Pure LISP program
Parameter nodes are ardered consistent with the formal pa
rameters they represent. Argument edges Lo an application
node are numbered to represent the order of the actual pa-
rameters. The ordering of parameter nodes and the argument
edges ol application nodes allows us Lo represent the Linding

(defun PrefixEval (Exp)
{cond ((null Exp) nil)
((null {edr Exp}) Exp)
((numberp (car Exp))
{cons (car Exp) (PrefixEval {edr Exp)))}
({and (numberp (car (cdr Exp)))
(numberp (car (cdr (edr Lxp)))))
{cons (eval (list (car Exp)
(car {cdr Exp))
(car {cdr (cdr Exp)))))
(PrefixEval (cdr {cdr [edr Exp)}))))
(t (PrefixEval (cons {car Exp)
{PrefixBval {edr Exp))}))

Figure 3: Example LISP Function PrefixEval

of actual to formal parameters. This serves to model data
dependencies across a functional interface.

Operator nodes are separated into control and value nodes.
A control operator differs from a value operator in two basic
ways. First, a control operator dues not compute the value
it returns. The control operator simply determines which of
a number of data values on argument cdges will be passed
an as the result of the control node. Second, not all argu-
ments to a control operator are used to furm the result of
the operator. This may seem redundant since we Jjust said
the result of a control operator ariginates frum outside the
contrel operator, but the pointis that not all arguments to a
control operator are possible results, This second difference
relates to the notion of p-uses and d-uses? defined by Rapps
and Weyuker[12]. We say that an edge is a p-use edge if it
is used to seleet a value to be returned by the control node.
Alternatively, a d-use edge represents a value that may be se-
lected. For example, the LISI* and aperator is represented by
a control node since it sulects its results from its argunicnts,

‘p-use and d-vsc stand fog predicate use and definition use,
respectively.

fcond Jcelit|ceiia] calid|calia[cat s [dat

Figure 4: FuneGraph fur Function PrefixEval

Sce node 35 in Figure 4. Alsu note that the single node 27
serves as the source of both the p-use and d-use edges into
cell 1 of this and node.

Bach formal parameter is represented by a parameter
node labeled by a unique identifier. The out-degree of a pa-
rameter node is equal to the number of references to Ui for-
mal parameter in the fanction definition, Type Definition 3
formally defines a parameter node.

Type Definition 3

MaramNuode 2-tuple{ Node/d:1dType,

Type ParamType);

ParamNode identifies each parameter unde with a Nodeld
and T'ype. In our PrefixEval example, the name uf the furmal
parameter could be used as the Nodefd value. A parameter’s
Type is defined to be one of the available LISP parameter
types NORMAL, OPTIONAL, or REST. Type Definition 4
farmally defines the available Types of a parameter node.

Type Definition 4

faramType (NORM ALOPTIONALREST);

Each occurrence of a function application s represented
by an application node. Type Definition § formally defines
the contents uf an application nude.

Typc Definition 5

ApplyNode = 3-tuple(Nodefd:1dType,
Funeld:FuneType,

NumParems:NonNegativelnteger);

The Nodeld uniquely identifies an application node. The
Funceldis either the identity of a known funiction represented

by a FuncGraph or is an unknown function. Type Definitions

6, 7, and B define the representation of the Func/d.

Type Definition 6
FuncType = Known |Unknown;

Type Definition 7

Known = IdType;
Type Definition 8
Unknown = O-tuple{);

The identity of an unknown function is run-time depen
dent and cannot be statically determined. An application
node of an unknown function requires one more argument
edge than an application node of a known function. This
extra edge supplies the functional form of the unknown fune-
tion. NumParamas contains the number of actval argu-
ments to an application of a function. Since the number
of arguments can vary for applications of the same function,
this number may vary between application nodes with cqual
known Funclds. If NumParams is 0 then this represents
an application of a constant function or a function accepting
a variable number of arguments.

Value nodes represent Pure LISP value operaturs and
Pure LISP constants, Value nodes are represented similarly
to application nodes, Type Definitiun 9 formally defines a
value node

Type Definition 9

ValueNode = 3-tuple(Nodeld:1dType,
Opld:1dType,

NumdArgs:NonNegativelnteger),

Each value node is uniquely identified in the FuncGraph
by its Nodeld. Value nodes representing occurrences of the
same Pure LISP value operator will share a comunon Opld.
NumArgs contains the number of arguments to this occur-
rence of the Pure LISP operator. In the FuncGraph in Figure
4 node 23 is a value operator with Opld list and NumArgs
equal 10 3. If NumArgs is O then the node represents a Pure
LISP constant, a quole, or lambda operator.

A control node represents any of the possible control up
erators provided for in the Pure LISP dialect described pre
viously®, The generalization of the different control operators
into one node type gives us a powerful node description.

Each LISP control operator can be thought of as a se-
quence of boolean/value pajes. The semantics of the LISP
operator is determined by how this sequence is treated. In
the lispflow representation of these conditional operators we
consider each boolean/value pair as a p-use/d-use cell, and
we simply number the cells. Identifying edges into the eells
is handled in the destination information of each edge and is
described subsequently. Type Definition 10 formally defines
a control node

“For a detailed development of the adeqeacy of the control operator

for representing all the control operaturs in the sperifed dialect of Pure
LISP, see 5]

109

Type Definition 10

ControlNode = 4-tuple(Nodeld:ldType,
Opld:1dType,
NumCells:Positivelnteger,

Key:Boolean);

Again, the Nodeld uniquely identifies each control node
from all the other nodes in the FuncGraph. The Opld iden-
tifics occurrences of the same control operator, NumCells
is the number of p-usefd-use cells. The key edge is required
to represent the key argument in the case operator. If the
contrul node represents a control operator requiring a key p-
use edge, then Key is true, otherwise Key is false. The key
p-use edge will result in one more p-use argument edge than
the number of p-use/d-use cells. Default values are handled
by having one more d-use argument edge than there are p-
use/d-use cells. The default value of a cond is nil and we
represent the default edge source as a constant value node
with Opld nil. In the FuncGraph for PrefixEval, node 40 is
a cond node and node 39 is the source of the default d-use
edge.

Each node type describes the number and type of argu-
ments required for an instance of a node. Each edge has a
specified source and destination node and represents a con-
nection from cne node to another in the FuncGraph. To iden-
Lify the source of an edge we need only the node identifier.
The destination of an edge could be a control node, a value
uode, an application node, or the result node. To identily
the result node as the destination requires only the Func-
Graph identifier. Edges destined for an application node or
value node require an argument number in addition to a node
identifier. Finally, edges destined for a control node must be
identified as either a key or default edge ur as a p-use or d-
use with a corresponding cell number. Type Definition 11
furmally defines an edge.

Type Definition 11

EdgeType = 2-tuple{ From:ldType,

ToToType);

The To portion of an edge is dependent on the node type
for which the edge is an argument. Type Delfinition 12 al-
ternatively defines the destination of an edge for the various
node types.

Type Definition 12
ToType = ApplyArg |ValueArg |ControlArg |Result;

Each alternative ToType describes the information nec-
essary to specify any particular edge destination. Type Del-
inition 13 defines an application node destination.

Type Definition 13

= 2-tuple{ Nodeld1dType,
Param N um:NonNegativelnteger);

ApplyArg

ParamN um is the argument number fur this edge. This
number must be between 0 and the NumParam (inclusive)
of the destination application node. If the ParamNum for

the edge is 0, then the application node represents an appli-
cation of an unknown function, and this edge represents the
functional form or aperator to be applied.

Type Definition 14 defines a value node destination.

Type Definition 14

ValucArg 2-tuple{ Nodeld1dType,

Arg N une:Pusitivelnteger);

‘The Arg Num is the argument number for this edges des-
tination. ArgNum must be between 1 and the Numirgs
(inclusive) of the value node.

Type Definition 15 defines the destination of an edge as
a control node,

Type Definition 15

ControlArg = 2-tuple(Nuodeld:1dType,
Arg Num:Positivelnteger,

ArglU se:UseType);

If the edge is a key p-use edge then Arglise equals P se
and ArgNum equals 0. If the edge is the p-use edge of a cell
then Argl/se again equals PUse and Arg Num indicates the
cell number. If the edge is the default argument edge then
Arglse equals DUse and ArgNum equals 0. If the edge
is the d-use edge of a cell then Argl/se also equals DU se
and ArgNum indicates the cell number. Type Definition 16
formalty defines UseType,

Type Definition 18

UseType (PUse, DUse);

If the value on an edge represents the result of the Fune-
Graph then the T'o of the edge is the identitier, i.c. Funcld,
of the FuncGraph. Type Definition 17 defines an edge desti-
nation as the result node.

Type Definition 17

Result IdType;

{ DType can be any Lype for which cquality is defined and
we leave the specification of this type to the implementer:

Type Definition 18

IdType generie;

In this paper we instantiate {dT'ype as type string. We
use the common practice of identifying nodes by a number
{n string of digits), except for resull nodes which we identify
using the name of the function,

We assume the usual specifications of Puositivetnieger and
NonNegativelnteger.

The source set described by the type definitions is a set of
objects. Not all of these objects are representations of Fure
LISP programs. In order to complete the domain specifica-
Ltion we would need to enumerate the varions properties that
all valid lispflows must satisfy. These propertics include the
uniqueness of Nodeld’s in a given FuncGraph and that the
argument number of an edge into a value nade must hot ex-
ceed the number of arguments for that node (and that each

14D

argument edge has a unique argument number). A complete
and formal enumeration of these propertics are in [5).

5 Mapping Pure LISP to Lispflow

Lispflow moadels cach LIS function definition as a Fune-
Graph. The mapping frum a Pure LIS program to the
lispllow model depends primarily un the mapping fron a Pure
LISP function to a FuncGraph, We assume Fanctivn defini-
tions arc syntactically currect and that we can identify any
particular literal atom as either a Pure LISP operator {vither
control or value) or as the name of a defined Function,
The first phase of the mapping sets up the environment for
modeling the body of a Pure LISP functiun, For cach func-
tion definition of the form (defun <oame> (X1 X2 ... Xn)
<function-body >} we define a FuncGraph F with Funcld(F)
equal to <uame>. Paremelers(F) is defined as Lhe sequence
of parameter nodes representing X1 X2 ... Xn with the appro-
priate paramcter node types, i.e, NORMAL, OPTIONAL, or
REST. We define a result edge E which will conaect the rep-
resentation of the s-expression <unction-body > to the result
node, i.e, To(E) = Funcld{F).
The mapping of <function-body> to the FuncGraph rep
reseintation is based vn the functional composition and the
recursive nature of the LISP evaluation rule. The mapping's
second phase maps an s-expression S (initially the <function-
budy=>) to a FuncGraph representation with result edge £
(initially the result edge of the FuncGraph from phase one).
If the s-cxpression S is atomic then it must cither be a
constani or parameter reference. A constant is represented
by defining a value node ¥ with no argument cdges and set-
ting From(E) = Nodeld{N). A parameter reference is rep-
rescuted by seiting From(E) equal to the Nodefd ol the
parameter node representing the parameter referenced.

If the s-expression § is o non-empty Jist then the Fune
Graph representation of S is based on one of the Bllowing
mutually exclusive casesS:

Case 1: If the first element of § is a list then this is an in-
stance of an application of an unknown lunction. We
define an application node N with Funcld{ N) unknown
and set From{E) = Nodeld(N). For each i ¢l
ment of § an argument edge £ is defined sueli that
Nodeld(To(E; 1)) = Nodeld(N)and PuramNumn(Te
(E:-1)) = i~ 1. The phase two mappings of s-expressioms
is recursively applicd to the i** clement of § with result
vdge E; 4.

Case 2: If the first element is atomie then it must be cither
a value opeeator, known functivn, or a control apera-
tor. Value operator and known function s-expressions
are bandled very much like Case t above, except there
will be no Ep argument edge since the nede defined is
cither a value node or an application node with a known
Funcfd. For a control operator s-expression, twu argu-
nient edges, one p-use and one d-use, are defined for
vach clause. I a clause is alomic (as in the and oper-
ator} or has length 1, then the representation of that

“A nowlist dotted pair is trented o8 o cosstant since ditled pairs
repregent a conslant stractured value and cannot be evaluated,

clause serves as the source for both argument edges.
Otherwise, the representations of the car and cadr of
the clause serve as the source for the p-use and d-use
argument edges, respectively. Based on the particular
control operator, a representation for a key argument
may be required. In every control operator a default
argument, either implicit or explicit, 15 provided and
must be represented with a default edge with appropri-
ale source.

The deseribed algorithun translates a Pure LISP functivn
definition into a FuncGraph. Certa aspects of a Fune-
Graph's construction may not be intuitively acceptable from
a programmer’s point of view. For instance, frequently the
last p-use argument of a cond or ease operator is the symbu)
t. Then, the default vaiue nil of the cond or case operator
could never be realized as an actual returned value. In that
case, it may be more appropriate Lo ignore the t p-use argu-
ment and use its corresponding d-use argument as the default
edge for the control node. Similarly, any constant valued s-
expression, eg., (ex. {+ 3 4)), can be evaluated and the
representation of its value is used in place of the representa-
tion of the constant valued s-expression. This modification
is carried oul across function interfaces to produce a “most
simplified” yet semantically equivalent lispflow.

Finally, multiple accurrences of the same s-expression can
be combined into one representation and multiple result edges
are used to supply each destination node with the argument
edge required. For example, consider nodes 3, 4, 6, and 9 in
the PrefixEval FuncGraph in Figure 4. Each of these nodes
has Opld cdr with exactly the same argument. Therefore
these nodes can be coalesced into a single node, namely the
node 2 in the revised FuncGraph in Figure 5. Note that
node 2 in this revised FuncGraph must have multiple result
edges, one for each result edge for the nodes 3,4, 6, and 9 in
the original FuncGraph. The FuncGraph of Figure 5 reflects
the enhancement transformations possible given the original
FuncGraph of Figure 4.

6 Definitions of LISPFLOW Structures

We now use the FuncGraph model to define several struc-
tures that underlic Pure LISP functions and suggest how
these might be used to define tools and measures analogous
to tools and measures based un flowgraphs. The perspec-
tive of edges as value carriers and nodes as value producers
is consistent with a view of the FuncGraph as an exccutable
representation of the function definition.

We can identify and define several nutions of paths in a
FuncGraph. A path represents a data dependency relation on
a sequence of edges. These dependencies may be ecither value
or control dependencies. We can then define collections of
paths that represent executions of parts of the FuncGraph.
These definitions culminate in a definition of an execution
trace of a Pure LISP function analogous to the definition of
an execution path in an imperative procedure

In a FuncGraph. a path represents a flow of values from
one node to anather. This Aow represents a data dependency

where the next result produced is dependent on the results
of the previous nodes in the path. Node types determine

il

for] B
PreflzEval

| Ccons

| PRager] Pear T ratizEral
|
Egnﬂxtul

/

#
R2cond |cel1t|callz|calldfrellde]dat|

Faull |

o1l |

PrafizEval

Figure 5: Modified FuncGraph of Function PrefixEval

whether a dependency is a control dependency or a value
dependency. Since data values always originate at parameter
or constant value nodes, we define a path as starting Irom
one of these nodes. Other than the starting point restriction,
a path in a FuncGraph can be defined in a standard manner
as a sequence of edges.

Control nodes in a FuncGraph are obviousty the source of
control siructure. A p-use argument value predicates the low
of d-use argument values through a control node, The choice
of a d-use argument edge Ey is control-dependent on all p-use
argument edges Ey, with Nodeld(To(E,)) = Nodeld(To(E4})
and ArgNum(To(Ep)) € ArgNum(To(Ey)). We define a
predicate path as any path in a FuncGraph that ends with
a p-use argument edee of a control node and does not con-
tain any other p-use edges. Thus a predicate path dves not
properly contain another predicate path. However, two pred-
icate paths may share common edges inctuding the final p-use
edge. We use the expression Pred Paths(F) Lo denote the set
of all predicate paths in a FuncGraph F.

The result of a control node is either used as part of the
computation of a p-use argnment of another control node or
or is eventually used as part of the computation of the Fune-
Graph result. The former case is for an edge on a predicate
path as defined above. The latter possibility represents a
contributiun to the result of the FuncGraph, We term this
type of path a vafue path because the FuncGraph result is
value-dependent on this path. Formally, a value path is any
path in a FuncGraph that ends with the result edge of Lhe
FuncGraph and contains no p-use edges” We use the expres
sion ValPaths(F) to denote the set of all value paths in a
FuncGraph F.

"Hecall we have defined p-use edges Lo be only those nrgument edges

to control nodes that predicate value aclection, and not all the edges of
a predicate path.

Figure 6 shows the value paths and predicate paths in
the modified FuncGraph representation of PrefixEval in Fig
ure 5. The thin solid lines represent the edges contained in
the value paths of PrefixEval. The dashed lines represent the
edges contained in the predicate paths of PrefixEval. Edges
contained in both a value path and a predicate path are rep-
resented by thick solid lines.

The predicate paths and value paths of a FuncGraph rep-
resent all of the possible control and value dependency re-
lationships present in a FuncGraph. Since cvery edge in a
FuneGraph represents a data dependency, this means that
every edge in a FuncGraph is contained in at least one predi
cate path or value path, Thus, the predicate paths and value
paths together cover every edge in a FuneGraph.

The result of a FungGraph can only depend on a value
path. A particular value path may not always be selected by
a control node. A group of value paths will all contribute to
the result of a FuncGraph if they are each selected by the
p-use argument edges of every control node through which
they pass.

Two value paths will be used in the computation of one
possible result vatue of a FuncGraph if they merge at a non-
control node in the FuncGraph. Two edges €, and eq are said
to merge il Nodeld{T'o(e1)) = Nodeld[To(e2)) and From{e,)

ORMA]

v

PrafizEval

i”l’_:r-u':l zEval I

P
[, o'rp
7
e ——
1 1nuzberp
el A
" 12140 | f3ear |
efixEval

28ynd d-f
\ ;\\ ay b
NN ‘

cons
P il

\

PrafizEval

Figure 6: PrefixEval Predicate and Value Paths

From(ez). I the two edges merge at a non-control node
then the result value of the non-control node is value-dependent
on both edges. We say two paths merge if an edge un one path
merges with an edge on the other path, and the two paths
share a common non-cmpty path suffix beginning at the node
where the two edges merge. We define the relationship be-
tween Lwo paths that merge at a nun-control node as a “sib-
ling” relationship and we use the expression Siblings(1, P2)
to denote that two paths 1 and P2 are siblings.

n2

We use the “sibling” relationship to define a set of value
paths called a value ezecution trace, (denoted VET) which
represents one possible computation of a FuneGraph result.
Definition 1 formally defines a VET in a FuncGraph F.

Definition 1

A Value Execution Trace (VET) is a set of Value Paths V in
a FuncGraph F such that V € ValPaths(F)

AVPL,p2[(pl € VA P2 € VAp] # p2) = Siblings(pl, p2)|
AVplp € V= -3glg € ValPaths(F)Ag g V A Siblings(p, g)]).

Informally, a VET is a set of all sibling value paths. We use
the expression V ETs(F) to represent the set of all VETs in
a FuneGraph F.

The use of a VET to compute the result of the FuncG raph
depends on the values of eacli p-use argument edge preceding
any d-use argument edge of a control node that lics on any
value path in the VET. The computation of the value on a
p-use argument edge mirrors the computation of the result
value of a FuncGraph. The value on the p-use argument edge
is value-dependent on a sel of sibling predicate paths which
contain (and thus end on) the p-use argument edge. We refer
to such a set as a predicete erecution trace, {denoted PET).
A PET represents the computation of one possible value of
a p-use argument of a contrul node. Definition 2 formally
defines a PET in a FuncGraph F,

Definition 2

A Predicate Exccution Trace (PET) is a set of Predicate
Paths P in a FuncGraph F such that P PredPuaths(F)
AVPL, p2((pl € PAp2 £ PApL # p2)= Siblings(pi, r2)]
AVplpe P =

Aqlg € PredPaths(F)ngq g P A Siblings(p, g}||.

The expression PETs(#) represents the set of all PETs in a
FuncGraph F.

Each VET is directly control-dependent on the value of
any PET whose p-use argument edge precedes a d-use argu-
ment edge of a member of the VET at a control node. The
value of a PET may in turn be directly control-dependent un
the value of another PET if the other PET's p-use argument
edge precedes a d-use argument edge of a member of the first
PET at a control node. We say a VET or PET V is directly
cotitrol-dependent on a PET P if P is incident-on V, denvled
IncidentOn(V, P).

By transitivity,a VET V in a FuncGraph F is indirectly
control-dependent on any PET P if P is incident-on a PET P
on which V is either directly or indircectly control-dependent.
The predicate dependency set of a VET is the set of all PETs

on which the VET is either directly or indirectly control-
dependent. We denote this predicate dependency set of a
VET V in a FuncGraph F by PredDepSel(V, F).

Recall that the value on a p-use argument edge of a con-
trol nude s like the result valne of a FuncGraph. There may
be a choice of several different PET's that compule the p-use
argument value. For any single execution of the functing,

"Il is assumed that both arguments are part of the same FuncGraph,

only one of these PETSs is actually used to compute the value
of the p-use argument. Any PETs that end on the same edge
represent different possible computations of the value on that

edge. We use the expression EndEdge(P) to denote the edge -

on which a PET P ends.

A particular VET may be chosen by several different corn-
binations of PETs in its predicate dependency set. Each of
these different combinations represents one execution of the
function which returns the value computed by the VET. Each
VET paired with one of the combinations of PETs is termed
an ezeculion frace, (denoted ET). Definition 3 formally de-
fines an execution trace of a FuncGraph F.

Definition 3

An Execution_Trace (ET) in a FuncGraph F is an ordered
pair (V,8) such that V¥ e VETs(F) A S C PredDepSet(V, F)
AVP[P € 8 = (IncidentOn(P, V)
v IP'[P' € S A IncidentOn(P, P')])]
AVP|(P € FredDepSet(V, F) A IncidentOn(P, V)) =
PP € SA EndEdge(P) = EndEdge(P')]|

AVP[PeS=

YP(P' € PredDepSet(V, F) A IncidentOn(P',P)) =

APHP" € S A EndEdge(P’) = EndEdge(P”)]|]

Figure 7 shows the VETs and PETs contained in the
FuncGraph of the function PrefixEval. We use integers to
label the VETs and PETs. Each edge is labeled by a paren-
thesized list of the VETs and by a bracketed list of the PETs
in which the edge is contained. An cdge may be contained in
both VETs and PETs. In Table 1 we list the predicate de
pendency set for each VET in function PrefixEval and then
list each execution trace in the function PrefixEval. The VET
or PET number in the table corresponds to the label used in
Figure 7.

A particular execution trace may actually be impossible
to execute because of the nature of the operations used to
compute the value of a PET. For example, ET4 in Table 1
could never be realized do to the nature of the and oper-
ator. In any case, the number of VETs in a FuncGraph is
analogous to the number of acyclic paths in a flowgraph of
a procedure containing compound predicate conditions. The
magnified depiction of predicate dependency relations found

Table 1: Predicate Dependencies and Execution Traces
Predicate Dependency Sets

VETI {PET1
VET2 {PET1,PET2}
VET3 {PET1,PET2,PET3}
VET4 PET1,PET2,PET3,PET4,PET5 PETG
VETS PET1,PET2 PET3,FPET4,PET5 PET6}
Execution Traces
ETt | VET1 {PET1}
ET2 | VET2 {PET1,PET2}
ET3 | VET3 [PETI,PET2,PET3)
ET4 | VET4 | {PETI,PET2,PET3 PETY4,PETG}
ET5 | VET4 | {PETI1,PET2,PET3,PETS PET6}
ET6 | VETS | {PET1,PET2,PET3,PET4,PETG}
ET7 | VET5 | {PET1,PET2,PET3,PETS PETS}

113

ay;
v -

// ///'

Vs
7w/

g
=S

\
|y
|y B il
||
: \

|:::‘z.c.n

Figure 7: VETs and PLETs of PrefixEval

in a FuncGraph gives us a finer count, namely the number of
execution traces, which is analogous to the number of acyclic
paths in a flowgraph of a procedure containing only simple
predicate conditions.

7 Conclusions

The PET, VET, and ET structures of lispfiows defined in
the preceding Section serve as examples of the static analy-
sis of functional programs supported by the lispflow model.
The authors suggest that these structures can be used to de-
fine hierarchies of structural test criteria analogous to those
of Rapps and Weyuker [12] and Ntafos [180]. These struc-
tures are also related to the notion of predicate scope [7] and
predicate range [8]. The authors are currently developing
other analytical properties of functional programs based an
the lispflow model.

An issue that may be of greater importance is the appro-
priateness of the dataflow paradigm for modeling production
dialects of LISP, and imperalive features of programs gener-
ally. This is consistent with the work on data dependencies
in imperative programs [4,12]. Also there are features of im-
perative programs which the flowgraph model does not han-
dle. Software measures researchers have for some time been
stymied by the inadequacy of measures based on Aawgraphs
to account for what goes on in expressions. “What goes on in
expressions” is precisely what the lispflow model does handle.
Additionally, flowgraphs are not particularly useful for mod-
eling the interprocedural, or integration, structure of imper-
ative programs. This is most apparent for recursively defined
procedures. The authars are currently investigating a hier-
archy of integration test criteria based on the lispflow model
for Pure LISP.

of I
equ

The lispflow model is providing insight into the structure
unctional programs. The dataflow paradigm may prove
ally useful for deseribing a wide range of programming

language features,

References

|2

[4

| 3. Backus. Can programming be liberated from the
Von Neumann style? A funetional style and its algebra
of programs. Communications of the ACM, 21(8):613-
641, August 1978

| Albert L. Baker, Jamnes M. Bieman, and Paul N, Clites,
Implications for formal specifications: results of spee-
ilying a sofiware engineering tool. In Proceedings of
the Eleventh Annual International Computer Software &
Applications Conference (COMPSA C-87), IEEE Com-
puter Society, Tokyo, Japan, October 1087,

| David M. Betz. Xhsp: an experimental olbijeet -oriented
language. June 1986.

| . M. Bieman and W. R. Edwards. Experimental evalu-
ation of Lhe data dependency graph fur use in measuring
software clarity. Proc. 18th Hawen Inlernational Con-
ference on Systems Science, 18:271-276, 1985.

[5] David L. Coleman and Albert L Baker. Lispflows:

Modeling the Structure of Funclional Programs, Tech-
nical Report 88-11, Jowa State University, Department
of Computer Science, 1988,

(6] J. B. Dennis. First version of a data flow procedure

language. Lecture Noles in Computer Science, 14:362
376, 1974

I7] W. A. Harrison and K. [. Magel. A complexity measure

based on westing level. ACAM Sigplan Notices, 16(3).63
74, 1081,

[8] J. W. Howatt and A. L. Baker. Definition and design

of a toul for program conlrol structure measures, Proc.,
COMPSACSES, 211-220, 1985,

(9] CLIT B. Jones, Systematic Software Development Using

VDM. Prentice-Hall luternational Ltd, 1986.

[10] Simeon C. Ntafos. A comparison of some structural Lest:

it

[12

3

ing strategics. In Proc. of the Nincteenth Annual Hawais
Int. Conf. on Syslem Sciences, 1986

| Roger S. Pressman. Software Enymeering: A Practi-
boners Approach. MceGraw-1lill Book Company, 1987.

] §. Napps and E. J. Weyuker, Selecting software test
data using data flow information. [EEE Trans. Software
Engmeering, SE-11(4):367 375, 1985,

| Robert Wilensky. LISPeraft. W.W Norton & Company,
Inc., 1984,

114

