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Abstract— Denial of Service attacks have become a weapon
for extortion and vandalism causing damages in the millions of
dollars to commercial and government sites. Legal prosecution
is a powerful deterrent, but requires attribution of attacks,
currently a difficult task. In this paper we propose a method to
automatically fingerprint and identify repeated attack scenarios—a
combination of attacking hosts and attack tool. Such fingerprints
not only aid in attribution for criminal and civil prosecution
of attackers, but also help justify and focus response measures.
Since packet contents can be easily manipulated, we base our
fingerprints on the spectral characteristics of the attack stream
which are hard to forge. We validate our methodology by
applying it to real attacks captured at a regional ISP and
comparing the outcome with header-based classification. Finally,
we conduct controlled experiments to identify and isolate factors
that affect the attack fingerprint.

I. INTRODUCTION

Distributed denial of service (DDoS) attacks are a common
phenomenon on the Internet [20]. A human attacker typically
stages a DDoS attack using several compromised machines
called zombies. The actual number of zombies on the Internet
at any given time is not known, but it is estimated to be
in the thousands [20]. To keep management simple, groups
of zombies are typically organized in attack troops, that the
attacker can then repeatedly use to flood a target. We define
the combination of an attack troop and the attack tool as an
attack scenario. An attack is identified as repeated when the
same attack scenario is used to launch multiple DoS attacks
over a period of time on a victim. Moore et al. have identified
35% of all Internet attacks are repeated attacks directed at
the same victim using backscatter analysis [20]. The results
indicate that repeated attacks are a very common and a serious
security problem on the Internet.

Current approaches addressing DDoS are focused on attack
prevention, detection, and response. Prevention of DDoS at-
tacks encompasses techniques that preserve integrity of the
hosts [31] and techniques to detect and rate-limit abnormal
network activity [19]. Attack detection is typically based on
techniques such as signature matching [23], [24] or anomaly
detection [21]. Response to DDoS attacks typically involves
filtering of attack packets, assuming a signature has been
defined, and traceback techniques [26], [28], which attempt
to identify the attack paths.

While approaches to detect and respond to DDoS are
improving, responses such as traceback require new wide-area
collaboration or deployment. We explore attack attribution, a

complementary approach that allows identification and quan-
tification of repeated attacks on a victim from the same attack
troop.

Attribution of attacks is important for several reasons.
The primary motivation is that attribution can assist in legal
prosecution of attackers. Recently there have been numerous
reports of extortion targeted against commercial web sites
such as online banking and gambling [30], [29]. However,
prosecuting attackers is still very challenging. Our system will
provide the ability to identify repeated attacks which will help
establish criminal intent and help meet monetary thresholds for
prosecution. Additionally, attribution can also be useful in civil
suits against attackers. Other motivations for deploying such
a system include automating responses to repeated attacks to
cut down reaction time, and it can also be used to quantify
repeated and unique attacks to justify investment in defensive
tools. Further, attack correlation over the global Internet can
help track global attack trends. Such information is useful
in designing the next generation of defense mechanisms and
tools. We explore these motivations in more detail in Sec-
tion III-A. Finally, our approach to attribution does not require
global deployment, only deployment near the victim.

Packet header contents of an attack packet can be easily
spoofed and provide very limited information about the attack
scenario. Thus as ballistics studies of firearms can trace
multiple uses of a weapon to the same gun, in this paper
we develop a system for network traffic forensics to uncover
structure in the attack stream that can be used to detect
repeated attacks. Figure 1 illustrates the scenario we consider.
Attackers have compromised two troops of machines in the
Internet, labeled A and B; they use these machines to attack
victims (labeled V) inside an edge network. A host at the edge
network (labeled M) monitors a series of attacks, recording
packet traces t1, t2 . . . ti. Our system then converts each attack
ti into a compact fingerprint, f(ti). We show that a fingerprint
uniquely identifies an attack scenario. Thus if t1 and t3 are
from troop A with the same tool while t2 is from troop B, then
f(t1) ∼ f(t3) while f(t1) 6∼ f(t2), and some new attack ti
can be identified as similar to either t1, t2, or representing a
new attack scenario.

This description raises several issues that must be explored.
First, we must identify traffic features that indicate an attack
scenario. Previous work on DoS attack classification has
established the use spectral analysis to detect the presence of
multiple attackers by extracting periodic behavior in the attack
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Fig. 1. Monitoring attacks in the Internet.

stream [12]. In this paper, we suggest that individual attack
scenarios often generate unique spectral fingerprints that can
be used to detect repeated attacks.

Second, to support this claim we must understand what
systems factors affect fingerprints. We evaluate what aspects
of the network cause regularity in the packet stream and affect
the fingerprints in Section V. There we present a battery of
experiments varying the attack tool, operating system, host
CPU, network access speed, host load, and network cross-
traffic. Our results indicate that even though there is sensitivity
with respect to host load and cross traffic, fingerprints are
consistent for a particular combination of attack troop and
attack tool.

Third, DoS attacks are adversarial, so in Section VI we
review active countermeasures an adversary can use to ma-
nipulate the fingerprint. There is a tension inherent in the
desire to identify scenarios as distinct from each other, yet
be tolerant to measurement noise. Our current method favors
sensitivity, so while we show that modest changes to the attack
scenario allow repeated attack detection, countermeasures such
as including significant changes in number of attackers or
attack tool result in different fingerprints. Clearly future work
will be required to explore alternative trade offs, however our
current approach does significantly raise the requirements in
attack tool sophistication and attack group size.

We validate our fingerprinting system on 18 attacks col-
lected at Los Nettos, a regional ISP in Los Angeles. We
support our methodology by considering two approaches: (a)
by comparing different attack sections of the same attack
with each other to emulate an ideal repeated attack scenario,
and (b) by comparing different attacks to each other. The
results indicate that different sections of the same attack
always provide a good match, supporting our attack scenario
fingerprinting techniques. Further, comparing the different at-
tacks indicated that seven attacks were probably from repeated
attack scenarios. We describe these approaches in more detail
in Section IV. We further investigate our methodology in Sec-
tion V and Section VI by conducting controlled experiments
on a testbed with real attack tools. The testbed experiments
enabled testing the attack scenario fingerprints with changes
in both environmental and adversarial conditions.

The contribution of this paper is to introduce attack attri-
bution as a new component in addressing DoS attacks. We
demonstrate a preliminary implementation that that can iden-

tify repeated attack scenarios and validate them through trace
data, testbed experiments, and exploration of countermeasures.
To our knowledge, there have been no previous attempts to
identify or analyze attack scenarios for forensic purposes.

II. RELATED WORK

Pattern recognition has been applied extensively in charac-
ter, speech, image, and sensing applications [14]. Although,
it has been well developed for applications in various prob-
lem domains, we have not seen wide-scale application of
this technology in network research. Broido et al. suggest
applying network spectroscopy for source recognition by
creating a database of inter-arrival quanta and inter-packet
delay distributions [2] and Katabi and Blake apply pattern
clustering to detect shared bottlenecks [16]. Additionally there
is a large body of work that analyzes timing information in
network traffic to detect usage patterns [9]. Further, network
tomography techniques such as those described by Duffield [7]
correlate data from multiple edge measurements to draw
interference about the core. In this paper, we make use of
pattern classification techniques to identify repeated attack
using spectral fingerprints and suggest that similar techniques
can be applied in other areas of network research.

Signal processing techniques have been applied previously
to analyze network traffic including to detect malicious behav-
ior. Feldmann el al. were one of the first to do a systematic
study on fingerprinting network path characteristics to detect
and identify problems [8]. Cheng et al. apply spectral analysis
to detect high volume DoS attack due to change in periodicities
in the aggregate traffic [3] whereas Barford et al. make use of
wavelet-based techniques on flow-level information to identify
frequency characteristics of DoS attacks and other anomalous
network traffic [1]. Hussain et al. make use of spectral density
of the attack stream to characterize single and multi-source
attacks [12]. In a broader context, researchers have used
spectral analysis to extract information about protocol behavior
in encrypted wireless traffic [22]. In this paper, we transform
the attack stream into a spectral fingerprint to detect repeated
attacks.

Intrusion detection refers to the ability of signaling the
occurrence of an ongoing attack and is a very important
aspect of network security. DoS attacks attempt to exhaust
or disable access to resources at the victim. These resources
are either network bandwidth, computing power, or operating
system data structures. Attack detection identifies an ongoing
attack using either anomaly-detection [21] or signature-scan
techniques [23], [24]. While both types of IDS can provide
hints regarding if a particular attack was seen before, they do
not have techniques to identify if it originated from the same
set of attackers.

III. ATTACK SCENARIO FINGERPRINTING

In this section we explore the applications and develop the
algorithm used to identify similar attack scenarios. First, we
discuss details about where and how a fingerprinting system
should be deployed. We then provide an intuitive explanation
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Fig. 2. Top plot: Frequency Spectra of two similar attacks overlap, Bottom
plot: Frequency Spectra of two dissimilar attacks are distinct

of how the detection algorithm for repeated attacks works.
Finally, we detail the algorithm with the help of an example.

A. Applications of Fingerprinting

Attack fingerprinting is motivated by the prominent threat
of denial-of-service attacks today. Utilities and critical in-
frastructure, government, and military computers increasingly
depend on the Internet for operation; information warfare is
a reality for these applications. In the commercial world on-
line businesses are under daily threats of extortion [29], [32],
[30], attacks by competitors [17], and simple vandalism [11].
Similarly, many websites, including the RIAA, SCO, and po-
litical sites, are vulnerable to ideologically motivated attacks.
Even universities and ISPs are subject to smaller-scale DoS
attacks provoked by individuals following arguments on IRC
channels. These small attacks can cause collateral damage
on the network. Each of these cases motivate the need for
better approaches to detecting, understanding, and responding
to DDoS attacks. Finally, although not directly attacked, ISPs
may wish to provide attack countermeasure services as a value-
added service.

Our attack fingerprinting system helps identify repeated
attack scenarios—attacks by the same group of machines
and attack tool. This identification provides assistance in
combating attacks. First, attack identification is important
in criminal and civil prosecution of the attackers. The FBI
requires demonstration of at least $5000 in damage before
investigating a cyber-crime [5]. Quantifying the number of
attacks is necessary to establish damages in a civil trial.
Although our algorithms do not directly identify the individual
behind the attack (which is a particularly hard problem), they
can help associate a pattern of attacks with an individual iden-
tified by other means, allowing legal measures to complement
technical defenses.

Further, the detection of repeated attacks can be used to
automate technical responses. Responses developed for an
attack can be invoked again automatically on detection of
the same attack, cutting down on reaction time. In addition,

estimating the number of attackers can help justify added
investment in better defensive tools and personnel.

Finally, an attack fingerprinting system can evaluate the
number of attack troops, number of unique and repeated attack
scenarios and quantify the amount of malicious behavior on
the Internet, providing more accurate “crime reports”.

B. Our Approach in a Nutshell

Every attack packet stream is inherently defined by the
environment in which it is created, (that is, attack tool and host
machine characteristics) and is influenced by cross traffic as it
traverses through the network. These factors create regularities
in the attack stream that can be extracted to create unique
fingerprints to identify repeated attacks. In this section, we
briefly outline the algorithms we use to detect and identify
these regularities.

Given an attack, we wish to test if this scenario occurred
previously. Figure 2 illustrates the intuition behind this con-
cept. The figure shows three attacks in two groups, with attacks
M and O on the top graph and attacks M and H on the bottom.
We claim that the spectra of M and O are qualitatively similar,
as shown by matching peaks at multiples of 30Hz in both
spectra. By contrast M and H are different, since H shows
distinct frequencies, particularly in 0–30Hz and 60-140Hz. We
compare all 18 captured attacks in Section IV and Figure 4.

While Figure 2 provides intuition that spectra can identify
repeated attacks, graphical comparisons of spectra are difficult
to automate and quantify. We therefore define a procedure to
reduce spectra to generate and then compare fingerprints that
abstract the key features of the spectrum.

Figure 3(a) illustrates our process and Section III-C de-
scribes it in detail. Briefly, we first isolate the attack packet
stream of attack A (step F1). Since attack traffic varies over
time, we divide it into N segments (step F2) and compute
the spectrum for each segment (step F3). We then extract
dominant features in the spectra by by identifying twenty
dominant frequencies of each segment (step F4) and merge
these to form the fingerprint, an 20×N matrix, FA (step F5).
To facilitate matching, we create an attack digest from the
mean (MA) and covariance (CA) of FA (step F6). The digest
values of each attack form the database of known attacks (step
F7).

Given a new candidate attack C, Figure 3(b) summarizes
the procedure for matching it against the database, Section III-
D provides a more detailed explanation. We begin by isolating
the attack and generating the fingerprint FC using steps F1–
F5 described above. We compare FC against the mean and
covariance of each attack in the database by breaking it into
its component Dk vectors and comparing each segment Dk

against a given attack, generating a match value (step C3).
We then combine the match values for all segments to create
an empirical distribution (step C4) and extract the low value as
the 5% quantile and the range as difference between the 95%
and 5% quantlies to estimate accuracy and precision of the
match (step C5). Comparing these values for different matches
can suggest which is best; comparing them against a fixed



(a) Extracting the attack fingerprint. (b) Comparing candidate attack C with registered attacks in the
database.

Fig. 3. Algorithm used to register and compare attack scenarios.

threshold can evaluate if that match is considered correct or
not.

For our algorithm to be effective, it must be robust to noise
and resistant to spoofing. Noise is introduced by changes in en-
vironmental conditions, such as change in host load or network
cross traffic. We examine the underlying network influences on
the spectrum and the impact of noise in Section V. We consider
adversarial countermeasures, such as change in number of
attackers or attack tool, in Section VI.

C. Creating the Attack Fingerprint

In order to generate the attack fingerprint, we first need to
isolate the attack stream from the network traffic. This is done
by filtering based on the attack signature, if identifiable. If a
signature is not available, or is hard to determine, we filter
based on the target’s address. Since we consider only flooding
attacks in our analysis, we assume that most other traffic is
squeezed out (otherwise the attack is not very successful).

Next we extract feature data from the attack stream by
converting the attack stream into a time series. We assume a
given sampling bin of p seconds and define the arrival process
x(t) as the number of packets that arrive in the bin [t, t + p).
Thus, a T second long packet trace will have M = T

p
samples.

The bin size p limits the maximum frequency that can be
correctly represented to 1

2p
Hz. We use a sampling bin of 1ms

for the attack fingerprint.
Given attack A, we divide the attack stream into k, where

k = 1 . . . NA, segments. For each segment we compute the
power spectral density Sk(f) where f varies between 0–500Hz
using techniques discussed in [12].

The power spectrum Sk(f) of the attack is obtained by
the discrete-time Fourier transform of the ACF to obtain
the frequency spectra for each attack segment, as shown in

Figure 2. Formally:

Sk(f) =
2M−1∑

`=0

r(`)e−ı`2πf (1)

Next we define a technique to quantitatively compare each
attack segment. We define a segment fingerprint Dk, a vector
consisting of the twenty dominant frequencies in Sk(f) to
be the frequency representation for each segment k (where
k = 1 . . . NA). Dominant frequencies are extracted by identi-
fying frequencies that contain most power in Sk(f). Ideally,
when comparing two attacks, an exact match for the attack
would consist of the complete frequency spectrum. However,
handling the complete spectrum makes computation of the
comparison more costly as well as requires significantly more
attack segments. Therefore, formulating the signature as the
dominant twenty frequencies helps reduce the number of
samples to make robust comparisons, with minimal loss of
information. To arrive at the optimal feature set we did a
preliminary exploration by varying the number of frequencies
used as features, and found that we get accurate match values
as the size of feature set increases and the poor matches for
smaller feature sets. We tested our algorithm with feature
sets of 5 and 30 frequencies on the attacks and testbed
experiments and obtained varying match results. The top 5
feature produced significantly lower quality matches while the
top 30 frequencies did not improve the quality of our matches.

Thus, the dominant twenty frequencies provide a good
estimate of the important periodic events that constitute the
attack stream. In Section VII, we discuss additional factors
we would like to explore to generate robust features.

Next for each attack A, we define FA as the attack fin-
gerprint consisting of all the segment fingerprints Dk(k =
1 . . . NA). We can think of FA as representing a sample



of the dominant frequencies of A. For easy comparison of
candidate attacks against the database, we compute attack
digests summarizing FA. We do this by computing the mean
and covariance of FA defined as:

MA = 1/NA

NA∑

k=1

Dk (2)

CA = 1/NA

NA∑

k=1

(Dk − MA)(Dk − MA)T (3)

A minimum ratio of 10 for the number of attack segments
NA to the size of the feature segment Dk is required to ensure
robust estimates for the mean and covariance of FA [6]. Since
the feature segment consists of twenty dominant frequencies,
we consider attacks that consist of at least 200 segments,
(NA = 200) each of two second duration, making the
minimum attack duration 400 seconds. As a result, the attack
fingerprint FA is defined as a 20x200 matrix. The attack digest
MA is defined as a 20-element mean vector of the dominant
frequencies and CA is defined as a 20x20 element matrix of the
covariances of the frequencies. Intuitively, these summarize the
most common frequencies by representing them as distribution
parameters of the attack sample.

We found the attack spectrum to be a good indicator of a
unique attack scenario. In fact identifying repeated attacks was
motivated by observing identical spectral behavior in different
attacks when we were working on our previous paper [12].
We discuss alternate feature definitions in Section VII.

D. Comparing Two Attacks

Once we have a database of registered attack fingerprints,
we can test if a new attack scenario, C, has been previously
observed by applying the Bayes maximum-likelihood classi-
fier [6]. The ML-classifier makes the following assumptions:

1) For a given attack scenario, the spectral profiles have
a normal distribution with respect to each dominant
frequency.

2) Every attack scenario is equally likely.
3) Every attack occurs independent of previous attacks.

To validate these assumptions, we verify that the every
attack segment fingerprint FA has an approximately normal
distribution for each dominant frequency represented in each
segment Xk, where k = 1 . . . NA . In each case, the χ2 test at
90% significance level indicated all the dominant frequencies
have normal distribution. The second and third assumption,
regarding the attack likelihood and independence are more dif-
ficult to validate. Clearly attack occurrences are not completely
independent since attack techniques and attackers change with
time; for example, Smurf attacks are not as popular today as
they were couple of years ago. But to quantify the comparisons
we must make these assumptions. As future work, we will
attempt to understand the impact of these assumptions and
their impact on the fingerprint as discussed in Section VII.

We use the Bayes maximum-likelihood classifier to test if
the current attack scenario C is similar to a registered attack

fingerprint A. First, we need to create an attack fingerprint
for attack C. We therefore segment the attack trace into NC

time series segments, xl(t), each of duration 2 seconds. We
then compute the spectrum Sl(f) for each attack segment,
l = 1 . . . NC and identify the dominant twenty frequencies
to form the attack feature segment Xl collectively defined as
the attack fingerprint FC . The value of NC depends solely on
attack length and can be smaller than 200 seconds used for
NA. Because we are not estimating distribution parameters for
making an attack comparison, there are no requirements on the
minimum number of attack segments NC .

Once the attack segment fingerprints are generated, we can
compare the fingerprint FC against the database of registered
attack digests. We make comparisons using the maximum
likelihood of each segment in FC against all previously
registered attacks A using:

lCA,l = (Xl − MA)T C−1
A (Xl − MA) − log|CA| (4)

where Xl represents each attack feature segment in FC ,
l = 1 . . . NC . Intuitively, Equation 4 quantifies the separation
between the registered attack scenario A and the current
scenario C and is also called the divergence of the attack
scenario distributions. This procedure generates a set of NC

matches, LCA, for each segment Xl of FC against each attack
digest. A match set is thus generated for all the attacks in the
database.

E. Interpreting the Match Data

Once the match set LCA for comparing current attack C
with each attack digest in the database is generated, we must
summarize this match data. For any comparison, some seg-
ments will match better than other segments. In this paper, we
try to find good general comparisons by specifically answering
the following two questions:

1) Are the comparisons accurate? i.e.: Does attack C match
well with the attack digest A?

2) Are the comparisons precise? i.e.: Does attack C consistently
have a small divergence with attack digest A?

To test for accuracy (TA) we compute lowCA, as the 5%
quantile of LCA. A small value for lowCA indicates at least
5% attack segments from attack C have a very accurate match
with attack A. To test for precision (TP) we compute highCA,
as the 95% quantile of LCA and the define the rangeCA as
the difference between highCA and lowCA. A precise match
will have a small range indicating a large percentage of the
attack segments match with the attack digest.

To automate the matching procedure, we now need to
identify what values of TA and TP indicate a good match
and how they are related. We define the matching condition
used for comparison of the attacks as Attack C matches attack
A if and only if

rangeCA < thresholdrange AND

lowCA < lowCB ∀B 6= A (Condition 1)

We empirically derive the values of the range threshold
in Section IV-B by comparing separate sections of real-world



attack to itself. In addition to identifying the closest match for
attack C in the database of attacks, we need to define a test for
when attack C is a new attack we have not seen previously.
We believe that the comparison of a new attack not present in
the database will have a matching condition of the form

lowCA > thresholdlow (Condition 2)

. The identification of such a threshold if more difficult since
we would need to observe completely new attacks in the
wild. We believe such a threshold will emerge as the database
increases in size.

IV. EVALUATION OF BASIC ALGORITHM

We now evaluate our comparison technique on attacks
captured at Los Nettos, a moderate size ISP located in Los
Angeles [18]. Our approach was motivated by observing
similar spectra during attack classification [12]. We observed
that the spectral content of several attacks, even though they
occurred at different times, was remarkably similar. We first
describe the packet characteristics of the captured attacks.
Since the trace data is from a live network, we cannot prove
that independent attacks are from the same hosts. Instead, in
Section IV-B we compare different sections of the same attack
to show our approach can identify the repeated attack scenarios
and use the results to define thresholds for a good match. We
then present examples of different attacks that we hypothesize
may be from the similar scenarios in Section IV-C.

A. Attack Description

Los Nettos is a moderate size ISP with diverse clientele
including academic and commercial customers. We detected
18 long attacks during the months of July–November 2003.
Although we detected many short duration attacks (more
than 80) during the period too, we limited our analysis to
attacks of at least 400s to generate fingerprint digests that
capture steady-state behavior. This threshold is probably overly
pessimistic; evaluating the appropriate attack duration needed
for fingerprint generation is an area of future work.

Table I summarizes the the packet header content for each
captured attacks at Los Nettos. The second column gives the
packet type, the third column gives the TTL values and the last
column summarizes the prefix-preserving, anonymized, source
IP addresses seen in the attack packets. The TCP no flags refers
to pure TCP data packets with no flags set, and the mixed
refers to attacks that use a combination of protocols and packet
types such as TCP, UDP, ICMP and IP proto-0. Few attacks
subnet spoof the source addresses (for example: attack B),
few attacks randomly spoof the source address (for example:
attack A), whereas few attacks use constant IP addresses (for
example: attack F). For the six echo reply reflector attacks
the last column indicates the observed number of reflector IP
addresses (along with the subnet address when possible). We
believe the attacks that have very similar packet header content
indicate the possibility that they are manifestations of the same
attack scenarios.

TABLE I

PACKET HEADER CONTENT OBSERVED IN THE ATTACKS CAPTURED AT

LOS NETTOS

.
Id Packet Type TTL Source IP
A TCP ACK+UDP 14, 48 random
B TCP ACK 14, 18 6.13.8.0/24
C TCP no flags 248 random
D TCP SYN 61 12.9.192.0/24
E Echo Reply 78 reflectors from 4.15.0.0/16
F IP-255 123 31.5.19.166, 31.5.15.186, 31.5.23.11
G IP-255 123 31.5.19.166, 31.5.15.186, 31.5.23.11,

31.5.15.8
H Echo Reply 1262 reflectors
I Mixed 27, 252 28.25.14.0/24
J Mixed 27, 252 28.25.14.0/24
K UDP 53 6.22.12.20
L TCP SYN 4,7 random
M Echo Reply 72 reflectors from 18.9.200.0/24
N Echo Reply 72 reflectors from 18.9.200.0/24
O Echo Reply 71 reflectors from 18.9.200.0/24
P Echo Reply 73 reflectors from 18.9.200.0/24
Q TCP no flags 248 random
R IP-255 123 31.5.10.96, 31.5.89.96, 31.5.87.24,

31.5.87.13

B. Emulating the Same Attack Scenario

The attacks listed in Table I are “from the wild”, therefore
we have can only deduce limited information of the attack
scenario. Comparisons among these attacks can only suggest,
but not prove, reuse of the same attack hosts and tools. Hence,
to establish the viability of our methodology in detecting
similar attack scenarios, we emulate a repeated attack scenario
by comparing different attack sections of a registered attack.
We chose this approach on the assumption that an attack
should best match itself and not match all other attacks, thus
this comparison allows a controlled study of our technique.
Additionally, this approach also helps establish what threshold
values of TA and TP indicate a good match for the matching
conditions described in Section III-E.

We divide each attack (A–R from Table I) in two parts,
a head and a tail section. The head section is composed of
the first 400s of the attack, that is used to define the attack
fingerprint by applying the technique described in Section III-
C. The tail section is made up of at least 20s of the remaining
attack to ensure reasonable number of segments to allow
statistical comparison against the fingerprint database.

For each attack, we compare the tail of the attack against
all registered fingerprints (computed from the heads of each
attack) using the technique outlined in Section III-D and
Section III-E. Figure 4 represents the accuracy and precision
of each attack compared against a database consisting of
all attacks. For each attack, we consider it a trial attack
(represented as a row) and compare it against the fingerprint
of each other attack (each column). For each combination the
graph shows the accuracy (TAAB) and precision (TPAB) of
the result. Accuracy is presented by the a line, the length of
which is linearly proportional to the inaccuracy of the match,
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Fig. 4. Graphical representation of TAXY and TPXY statistics for 18
attacks captured at Los Nettos (values greater than 1000 is indicated as square
and X). Each row represents a trial attack, while each column represents a
database fingerprint; the intersection is a comparison of the attack against a
particular database entry.

so short lines represent better accuracy. Accuracies greater
than 1000 are considered “too inaccurate” and are instead
plotted as an X. Precision is represented with a circle whose
area is linearly proportional to the precision of the match, thus
large circles represent imprecise results. Ranges greater than
1000 are considered “too imprecise” and and plotted as a large
square. A numeric representation of this data can be found in
our technical report [13].

We can observe several things from this table. First, the
diagonal from A–A to R–R represents the comparison of at-
tacks against their own fingerprints. We see that attacks almost
always have the most accurate match against themselves, as
we would expect. For example, we get TAAA = 201 and
TPAA = 15 when comparing trial segments of attack A with
the attack digest A. Surprisingly, this is not always the case,
as in attack M and attack P where the TAMP = 171 is more
accurate then TAMM = 174. We discuss this exception in
more detail later in the Section. Additionally, we observe that
in some cases as in attack H, TPHH = 80 is fairly large. A
high TP when an attack is compared against itself indicates
that the attack has a large amount of internal variation. We
consistently observe comparing the head and tail sections of
the same attack provide the closest matches for nearly all
attacks validating our comparison techniques.

We can also use self-comparisons to evaluate what values
of TP are reasonable. Since self-comparisons indicate internal
variations of up to 100 are common, we select this as a
threshold for TP in match Condition 1 (Section III-E) to
indicate a good match.
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Second, Figure 4 compares 18 by 18 possible matches
between attack scenarios. As an example of two of those
matches, we take comparing the tail of attack F to the reg-
istered fingerprint of attack F (TAFF = 172 and TPFF = 57
represented by a circle and a short line) and the registered
fingerprint of attack J (TAFJ = 223 and TPFJ = 768333
represented by a square and a line), and visually analyze
the difference in the cumulative plots of the values. We plot
the cumulative distribution of the set of matches LFF in
Figure 5 (shown by the solid line). Observe the small TPFF

indicated by a nearly vertical line in the graph. In contrast,
the cumulative distribution of set of matches LFJ is spread
across a large TP of values (show by the dashed line). The
difference in the cumulative plot arises since the ML-classifier
consistently returns a small divergence value for the similar
attacks and large divergence values when comparing dissimilar
attacks.

Additionally, we observe that some trials match poorly
against all attacks. Attacks H, J, and L are in this category.
Although we might expect the graph to be symmetric, it is not
(for example, compare LCA and LAC). Asymmetric occurs
because matching considers the entire attack while fingerprint
generation considers only a 200s period.

We also evaluate false negatives, that is attacks where self-
matches are poorer than matches against other attacks. The
TAMM = 174, TANN = 175, and TAOO = 170 diagonal
elements are slightly less accurate than the non-diagonal
elements TAMP = 171, TANP = 174, and TAOP = 168
indicating more accurate matches with attack P. While one
might consider this a false negative, an alternative explanation
is that these attacks are very similar and hence generate small
differences in accuracy values. False positive conditions in the
algorithm occur when an attack is identified as repeated when
infact it is a new type of attack. In Section V we do a battery
of experiments to evaluate when such conditions may occur,
and in Section VII we describe how a larger attack database
would aid in evaluating the false positives.

We have demonstrated that our approach can detect repeated
attack scenarios by considering the ideal case of matching
attacks with themselves. This “success” may not be surprising
since we knew that each candidate attack had a match;
however lack of mismatches in this case is promising. The



above process also provided thresholds for TP values that
can be used to to indicate good matches for different attacks.
We next compare different attacks to see if it is plausible that
any two observed attacks represent the same scenario.

C. Testing with Different Attacks

We now attempt to identify similar attack scenarios by
comparing different attacks against the fingerprint registered
in the attack database. The comparison matrix presented in
Figure 4 provides the TAXY and TPXY statistics for all
the attacks compared with each other in the non-diagonal
elements. To test for similarity, we use the match Condition 1
(Section III-E), with the TP threshold of 100, established in
the previous section. The packet contents in Table I, provide
insight into plausible repeated attack scenarios. We expect the
TA and TP values to be small for similar attacks. We observe
four sets of very similar scenarios. We have ordered the rows
and columns to place these adjacent to each other, and we
surround their comparisons with a dashed box.

The first set consists of three attacks F, G, and R. All three
attacks have the protocol field in the IP header set to 255, and
a TTL value of 123, and the source IP addresses originate from
the same subnet but vary in number. Attacks F and G occur
approximately 31 hours apart, whereas attack R occurs 75 days
later. Comparing the statistics we observe that the values of
TAFG, TAGF are the smallest in the non-diagonal elements
with TPFG, TPGF less than 100. Further, small TARF , and
TARG with small TPRF , and TPRG statistics indicate attack
R is similar to attacks F and G. We did not obtain sufficiently
small TAFR and TAGR statistics. These the statistical values
indicate a strong similarity between the attack scenarios.

The next set consists of attacks M, N, O, and P. All
four attacks originate from reflectors belonging to the same
subnet. These attacks occur within 6 hours of each other.
The attacks have very small TA and TP statistics in the
non-diagonal elements providing a good four-way match with
each other. Due to the close match, the TAMM , TANN

and TAOO diagonal elements are approximately three points
higher than the non-diagonal elements TAMP , TAMO and
TAOP respectively. These attacks therefore are an exception
of the rule indicating smallest TA values are seen in the
diagonal elements and discussed in Section IV-B. We believe
the small difference in the statistics is due to close matches
with the similar attack scenarios and validates the conclusions
made earlier.

The statistics do not provide a good matching criteria for
the two sets of attacks. Attacks I and J are mixed attacks
from the same subnet occurring approximately 33 hours apart.
The statistics for comparing these attacks are more than 1000
points apart indicating no match. The last set consists of
attacks C and Q and they occur approximately 3 months apart.
The statistics do not provide a good match for attacks C and
Q. Due to the limited information available for the captured
attacks, it is very difficult to assess why the techniques do
not work. However, two these sets of attacks are single-source
attacks that have a very noisy spectrum when observed at 1ms

TABLE II

TOOL CATEGORIES WITH ATTACK RATES WITH NO LOAD AND LOAD

CONFIGURATIONS IN KPKTS/S

Type of tool Testbed Machine
M1 w/load M2 w/load M3 w/load

Network Limited 15 10 15 10 15 10
Host Limited 9-11 6 15 10 15 10
Self Limited 0.05 0.05 0.05 0.05 0.05 0.05

sampling bins [12]. The comparison approach tries to identify
dominant frequency patterns when comparing two attacks,
therefore it can not make good matches for noisy spectra
indicating these techniques can be applied only to attacks that
have distinct dominant frequencies. We are exploring how to
estimate frequency spectra more robustly especially for single-
source attacks as future work.

Hence we observed highly probable repeated attack scenar-
ios, that were detected by the attack fingerprinting system.
In the next section, we investigate factors that affect the
attack fingerprint, we conducting controlled experiments and
isolating one factor at a time.

V. UNDERSTANDING CAUSES OF SPECTRA

In the previous section we showed that real attack traces
can be used to build a database of attack fingerprints, and
that they can statistically identify multiple attacks representing
the same attack scenario. But to trust these results we must
understand what network phenomena cause these fingerprints,
and particularly how robust this technique is to environmental
interference. We cannot do this with observations of real
attacks because they do not provide a controlled environment.

The key question to the utility of our approach is, what
factors influence a fingerprint? Our prior experience working
with power spectra [12] suggests that number of attackers, host
CPU speed, host load, network link speed, attack tool, and
cross-traffic, all affect the dominant frequencies of traffic. Our
definition of attack scenario is the combination of a set of hosts
and the attack tool. Our hypothesis is that the primary factors
that define and alter the frequency spectra are characteristics
of an individual attack host (OS, CPU speed, and network link
speed) and the attack tool; such a definition of attack scenario
would provide a useful tool for network traffic forensics.

If other factors affect the attack traffic, we will require a
broader or narrower definition of attack scenario. A broader,
less restrictive, definition of attack scenario might be the attack
tool alone, if spectral content is largely independent of host
characteristics and network characteristics. Such a definition
may still be useful for identifying new attack tools, but it
would lose the value of applying this approach for forensic
purposes. Alternatively, fingerprints may be more strongly
dependent on other factors such as network cross-traffic. If
fingerprints are strongly influenced by cross-traffic then a
fingerprint may be very specific to a point in time and space,
thus our approach may lose its value to track a single host/tool
pair.



We believe the trace data presented in Section IV is consis-
tent with our hypothesis, since self-comparison argues against
a broad interpretation, yet repeated examples of similar finger-
prints at different times argues against a narrow interpretation.
But we cannot truly verify our definition from trace data
because it does not provide a controlled environment.

To validate our definition of the attack scenario, we conduct
a battery of controlled experiments on a network testbed
testing fingerprint sensitivity to environmental perturbation.
First, we observe how the spectral behavior of an attack tool
varies due to systematic changes in the environment, such as
different operating systems and hardware configurations and
analyze spectral behavior of different attack tools. We then
study how environmental noise, such as the variations of host
load and cross traffic change the attack spectral behavior. The
experiments suggest that the attack fingerprint is primarily
defined by the host and attack tool characteristics.

A. Testbed Setup

To study the effect of various factors such as OS, attack
tool, CPU speed, host load, and cross traffic, on the attack
fingerprint, we conduct a battery of controlled experiments on
a network testbed. During each experiment, we isolate one
parameter of interest, for example, operating system behavior,
and study the stability of packet stream fingerprints.

To perform these experiments, we constructed a symmetri-
cal testbed consisting of eight machines connected in a star
topology.

The testbed machines are chosen such that there are three
sets of two identical machines, the LMx machines have Linux
2.4.20 installed whereas the FMx machines have FreeBSD 4.8.
This allows us to keep all hardware configurations exactly the
same, when studying the effects of software, such as operating
system and attack tools. The testbed includes different hard-
ware architectures and operating speeds to stress our algorithm
to the maximum and validate it works in most conditions.

Each pair of machines on the testbed represents increasingly
more powerful computers. The first pair of machines, LM1 and
FM1, collectively called M1 testbed machines are the slowest
machines on the testbed. They have 266MHz Intel PII CPU
with 128MB of memory. These machines represent the old
generation CPUs on the Internet machines. The next pair of
machines, LM2 and FM2, collectively addressed as the M2
testbed machines have 1.6GHz Athlon CPU with 512MB of
memory. These machines are the previous generation CPU and
they also helps test for differences between Intel and Athlon
hardware. The last pair, LM3 and FM3, collectively called as
M3 testbed machines, are the current generation of machines
and have a 2.4GHz Intel P4 with 1GB of memory.

Great care was taken while setting up the testbed to ensure
that all factors, other than the one we want to vary, are kept
constant. For example, we ensured all the testbed machines
have identical 3Com 3c905C network cards. We constructed
a 10Mbit/s network with all the testbed machines connected
together with a hub to allow traffic observation. In addition
to the symmetrical machines that are used to generate packet
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Fig. 6. The effect of the operating system on the attack fingerprint

stream, we use two additional machines; a observation point
machine, which is a 1GHz Intel PIII with 512MB of memory,
to gather tcpdump network traces during the experiments, and
a victim machine, which is a 600MHz Intel PII with 256MB
of memory, that is used as the target for all attack traffic on the
testbed. Additionally, we try to minimize local network traffic
such as ARPs by ensuring all the testbed machines have a
static route to the victim machine and the victim machine is
configured to not generate additional ARP or ICMP messages.

We conduct all the experiments using using six different
attack tools: mstream, stream, punk, synful, synsol, and synk4.
We categorize the attack tools into three groups:

(I) Network limited tools that can generate packets at
their maximum capacity even when deployed on slow
testbed machines such as M1, for example, mstream
and stream.

(II) Host limited tools that can generate more attack packets
when deployed on a fast testbed machines such as M2
and M3, for example, punk and synful.

(III) Self-limited tools that have a fixed packet rate irrespec-
tive of the testbed machine for example, synsol and
synk4.

We selected our attack tools such that each category above
has two attack tools. All the attack tools generate 40 byte
packets and consist of packet headers only. In Section V-G,
we modify the attack tools to generate 500B packet to evaluate
how a saturated network modifies the fingerprint.

Although all the attack tools generate the same size packets,
the different behaviors categorized above is due to the way
the tools are programmed. The type I tools have efficient loop
structures that can rapidly generate packets without requiring
much computational power. Additionally these tools do not
randomize many fields in the packet headers. Whereas the type
II tools require more computational power usually because
they randomize most of the header fields and invoke multiple
functional calls between each packet generation. The type III
tools are not CPU bound, that is, they do not generate high
packet rates as they deliberately introduce delays between
packet generation to evade detection. Table II provides infor-
mation regarding the packet generation capabilities of each
attack tool category.



TABLE III

COMPARING THE EFFECT OF OPERATING SYSTEMS ON THE ATTACK

FINGERPRINT USING TAXY (TPXY ).

Type of tool Testbed Machine
M1 M2 M3

I 1(35) 101(57) 22(57)
II 131(814) 34(87) 7(1)
III 1(1) 2(1) 1(1)

B. Comparing the Spectra

We conduct more than 1000 experiments to explore the
factors the affect the attack spectra. While exploring each
factor, we conducted experiments on all pairs of testbed
machines using all the attack tools. Further, to make sure our
results were stable, we performed each experiment at least
three times. In all cases the spectral fingerprint estimates are
nearly identical.

For each experiment, we observe detailed spectral infor-
mation using a sampling bin size of p = 10µs which
provides a frequency range up to 50KHz. Since some of the
attack tools generate packets at very high rates the increased
resolution allows observation of all the frequencies present in
the spectrum without losing any information. When the attack
tool generates packets at a slower rate, we reduce the sampling
rate to minimize the effect of harmonics.

Although, the testbed setup allows us to systematically
explore all the factors that effect the fingerprint, we next need
to quantitatively compare each set of attack fingerprints. In
addition to comparing the spectral plots visually, we find the
match set defined in Section III-D.

Specifically, we first need to create a fingerprint database.
Since all our experiments were repeated three times, we use
one set of the experiment results to generate the fingerprint
digests and register them to create the fingerprint database. We
then use 100 attack segments from the remaining experiment
runs to compare the two spectral fingerprints and test for
accuracy and precision of each experiment run.

In the next sections, we present both results, that is, the
attack spectral plots as well as the match quality data for each
comparison. The results indicate that the attack fingerprint
is primarily governed by host and attack tool characteristics.
However, if a network link gets completely saturated with
cross traffic en route to the victim, the spectrum is significantly
altered, and extracting the fingerprint from resulting spectrum
may not be possible.

C. Varying the OS

First we evaluate if different operating system can alter the
attack stream in different ways when all other factors are
constant. If we find that the operating system significantly
alters the attack spectrum, then it will be an important aspect
of the attack fingerprint.

We conduct experiments with all the attack categories on
each pair of the testbed machines. Table III compares the
spectra fingerprint for all three categories of attack tools on
testbed machines M1 by comparing the attack spectrum of the
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Fig. 7. The effect of CPU speed on the attack fingerprint

attack tool on a FreeBSD machine to a Linux machine. We
observe that both operating systems produce nearly identical
spectra for type I and type III tools on all three pairs of testbed
machines. Specifically, both FreeBSD and Linux generate very
similar spectra for type I and type III tools results in low TA
and TP values.

However, when comparing the plots in Figure V-A, we
observe difference in the spectra for type II tools. We observed
that type II tools generate packets at a slightly higher rate
on FreeBSD (11Kpkts/sec) than Linux (9Kpkts/s) for M1
machines resulting in different spectra. For the other two sets
of testbed machines, since type II tools manage to generate
packets at their maximum capacity (15Kpkts/s), they have
identical spectra.

Because of the difference in spectra observed for type II
tools on M1 machines leads us to conclude that the operating
system does effect the attack fingerprint. Table III summarizes
the results. Each entry in the table indicates the quality of the
comparison on the attack fingerprint when using same attack
tool on a FreeBSD machine compared to a Linux machine. As
expected the TPFM1(II)LM1(II) for type II attacks on testbed
machines LM1 and FM1 is extremely high (814) indicating a
poor match. All the other match values indicate a good match
between the two attack fingerprints since their values are below
the threshold of 100.

This experiment clearly suggests that if the attacker uses a
host bound tool, the operating system can influence the effi-
ciency of packet generation and thus create different spectra.

D. Varying the CPU Speed

We now evaluate if CPU speed differences produce a
different spectral behavior when keeping all other factors
constant. In the earlier section, we saw that the operating
system can influence the attack fingerprint, especially on M1
testbed machines. In this section, we demonstrate that when
using the same operating system (we use FreeBSD in this
example) we observe different attack spectral behavior based
on the speed of the CPU. The results in Table IV compare
all three attack tool categories on the slowest machines, M1,
against the faster machines, M2 and M3, on the testbed.

If the CPU speed did not matter, then we would observe
no difference in all the spectra. However, when looking at
the TA and TP values, we observe two things. First, type I



TABLE IV

COMPARING THE EFFECT OF CPU SPEED ON THE ATTACK FINGERPRINT

USING TAXY (TPXY ).

Type of tool Testbed Machines
M1:M2 M1:M3

I 6(23) 71(35)
II 78(472) 40(436)
III 1(1) 2(1)

and type III have identical spectra on both testbed machines
indicating that the CPU speed does not alter the attack spectra
significantly. Second, type II tools have different spectral
behavior on FM1 machines compared to FM3. The Figure V-
B shows that since FM1 has a slower CPU, it cannot generate
packets at the network speed and has a frequency at 11KHz
as compared to machine FM3 that has a sharp peak at 15KHz.

We observe similar results when machines LM1, LM2, and
LM3 are compared. Observe that the type II tools have large
TP values indicating a poor match.

Similar to our previous conclusion, this experiment also
suggests that when using host bound attack tools, the CPU
speed affects the attack fingerprint since the packet generation
capability is limited by the computation power of the CPU.

E. Varying the Host Load

We have previously observed that CPU speed has a strong
influence on spectrum. This suggests that other programs
competing for the host CPU may alter an attack spectrum.
Therefore in this section, we evaluate the effect of host load
on the spectral behavior of the attack stream. If we find that
the fingerprint is sensitive to host load changes during the
attack, it would make this technique more restrictive in its
application. Host load, similar to cross traffic on the network
(Section V-H), is ephemeral (since it changes with time) and
thus ideally should not contribute to the attack fingerprint.
Our results indicate that the proposed algorithms are robust to
changes in the attack fingerprint due to host load.

To perform this set of experiments, we first need to
generate host load on the testbed machines. We therefore
launch the attack tools along with a command-line instance
of Seti@home [27]. Seti@home is a widely available, non-
trivial application that generates large amounts of computa-
tional load. For our experiments, we execute a single copy
of Seti@home in the foreground at normal priority, unlike
it’s usual configuration where it runs in the background.
Seti@home forces the CPU usage of the attack tool to drop to a
45–60% range. When the attack tools are executed exclusively
on the testbed machine the CPU usage ranges between 85-
95% as reported by top. These CPU usage values indicate a
significant difference in the performance of the attack tool with
and without Seti@home.

Referring to Table II, observe that both type I and type II
tools experience a drop in the aggregate attack packet rates
when load is added. Due to the extra load on the testbed
machine, the attack tool get scheduled less frequently and
hence can no longer generate packets at its peak attack rate.

TABLE V

COMPARING THE EFFECT OF HOST LOAD ON THE ATTACK FINGERPRINT

USING TAXY (TPXY ).

Type of tool Testbed Machines
M1 M2 M3

I 2(29) 201(25) 2(1)
II 390(485) 25(174) 1450(2)
III 9(1) 34(1) 2(1)

In Table V we compare the attack spectral fingerprints for
type I tools on the Linux machines without load and with load.
In this example, we compare only type I attack tools, since
both type II and type III tools are not good candidates for such
comparisons. Type II tools do not have the same spectra on
different CPU speeds and hence cannot be compared across
testbed machines whereas type III tools generate packets at
such low rates that they are not affected by the increased load.

We observe all the testbed machines have the same domi-
nant frequency at 15KHz for both no load and load conditions.
However, the addition of host load increases the power in
low frequencies by about 10%. Although, the load changes
the lower frequency content, it does not add any dominant
frequencies and therefore the spectral behavior is stable.

Table V summarizes the quality of the fingerprint matches
under load conditions. The entries in the table match the
spectral fingerprint of the Linux testbed machines, with and
without load. Type I tool provides a good match across all
testbed machines indicating that the host load does not affect
the spectral fingerprint significantly.

This experiment indicates that although the load reduces
the overall packet rate by the attack tool our technique for
generating attack fingerprints is robust to load and can be used
to identify repeated attacks even in case of variation in host
load during the attacks.

F. Varying the Attack Tool

Next we evaluate how much does the attack tool contribute
to the attack spectral fingerprint. In this section, we try to
answer the question, is it possible to identify each attack tool
by their spectral behavior observed in the attack stream? If it is
possible to do so then each attack tool can have its own spectral
fingerprint and it will allow us to understand the deployment
and usage of specific attack tools on the Internet.

When comparing the attack fingerprints in the previous sec-
tions, we observe that the attack stream is strongly influenced
by host parameters such as operating system, CPU speed.
Therefore, we know that the attack tool spectral behavior does
not survive in the packet stream in all cases partially answering
the above question. In this section, we present results that
indicate that the attack tool defines the spectrum provided the
attack tool is not limited by any other resource.

Referring to Table III, Table IV, Table V we observe that
type I and type III attack tools have identical spectra when seen
across all the hardware platforms. Both these tool categorizes
are not limited by the available resources since they require
low resources due to the way they are programmed. Type I



tools are efficiently written and thus do not have a high packet
generation overhead and creates the same spectra on all the
testbed machines. Type III attack tools on the other hand, have
their own distinct fingerprint that is a function of how long
the tool waits between two packets.

These results lead us to believe that the attack tool on each
attack host creates a distinct pattern that can be fingerprinted
to identify repeated attacks.

G. Varying the Attack Packet Size

All the above experiments suggest that the host character-
istics (such as operating system, CPU speed) and the attack
tool defines the spectral behavior provided the network is not
saturated. For Type I and Type II attacks tools, the spectra
is influenced by the available network capacity. These tools
saturate the network by generating packets at 15Kpkts/s which
results in a sharp peak at 15KHz in their respective spectrum.
We believe, that if we modify the packet rate by increasing
the packet size, then the attack tools will produce a different
spectra.

To verify if this is true, we rerun the above set of experi-
ments by increasing the packet size in the attack tools to 500B
and observe how the change affects the spectral behavior. Type
I tools now generate packets at 2100pkt/s across all testbed
machines and are not affected by the load on the machine.
Type II tools also generate packets at 2100pkts/s across all
testbed machines but the packet rate reduces to 1700pkts/s
when load is increased using Seti@home instances. Type III
tools still generate packets at 50pkts/s.

Due to space constraints we omit plots that show the
changed spectra. However, as expected the increase in packet
size resulted in the dominant frequency to move from 31KHz
to 2.1KHz for both FreeBSD and Linux machines. Further,
since the packet size is large in this set of experiments, the
attack spectra are not susceptible to host load. However, the
Type II tools on the other hand can generate more packets
when there is extra computational resources available, thus
when load is added the attack rate reduces. Type III attacks
generate a very low volume of packets that can keep up with
the slowest machine on the testbed and are thus not affected
by the load and have a fixed packet rate.

This experiment suggests that the attack fingerprint is al-
tered by a bottleneck link. In most cases the Internet access
link is the bottleneck and is present at the first hop of the
path. We have seen that Type I tools that are network bound
always saturate the access link and, if computation power is
available, Type II tools also saturate the access link leading us
to believe that the attack fingerprint is robust is most network
path topologies. Next, we explore the effect of cross traffic on
the attack fingerprint.

H. Varying the Network Cross Traffic

The above set of experiments provide insight into how
software and hardware characteristics contribute to the attack
fingerprint. In this section, we explore the effect of cross traffic
on the attack spectra.

To understand the impact of the network cross-traffic, we
propose a simple model that simulates the network using
exponential packet arrivals. A packet is transmitted with a
probability prob, which ranges from 5–100%. If a decision
is made not to transmit a packet, during any time instance, it
delays transmission for an exponential amount of time before
attempting transmission again. The mean exponential inter-
arrival time is the transmission time for smallest packet on
the network. The network cross-traffic consists of a mix of dif-
ferent packet sizes. The cumulative distribution of the packet
sizes models traffic seen on the Internet [4]. In particular, 50%
of the packets are 40bytes, 25% packets are 560bytes, and 25%
of the packets are 1500bytes.

The cross-traffic is then combined with the attack traffic to
see its effect on the attack fingerprint. Since we are interested
in observing at what point the attack spectrum is affected by
the cross-traffic, we progressively increase the cross-traffic rate
to see what maximum ratio of cross traffic to attack traffic will
still preserve the attack fingerprint.

In Figure 8 we observe how the attack spectrum of type
II attacks on LM1 changes as the amount of network cross-
traffic increases from 5–100%. When there is less than 60%
cross-traffic, a sharp peak can still be observed at 10KHz and
the comparison algorithm indicates a good match with TA
values of 1–75 and TP values of 35–94. Once the cross-
traffic increases to 60% of the traffic on the network, the
spectral behavior shifts to a sharp peak at 32KHz and the
fingerprint no longer matches (TA=97, TP=583). The sharp
peak at 32KHZ reflects that the network is saturated and
corresponds to the frequency created by 40byte packets on the
network. As the rate of cross-traffic increases further, we can
observe other dominant frequencies corresponding to 560bytes
and 1500bytes appear in the spectrum.

This experiment indicates that cross traffic of more than
60% network capacity will affect the fingerprint. However,
backbone network links rarely operate at capacity and thus
the possibility of traversing a saturated link is very minuscule.
Thus we believe our attack fingerprinting technique can be
used in most network conditions.

The battery of experiments presented in this section suggest
that the spectral fingerprint is defined by the attack tool and
attacking host (operating system and host CPU) and can be
altered only by network paths that are saturated by cross-
traffic. When the cross-traffic is increased to more than 60% of
the network capacity then the fingerprint is dominated by the
frequencies present in the cross-traffic. Additionally, although
the host load increases the energy in the lower frequencies, it
does not change the attack fingerprint and therefore provides
good matches when using the proposed algorithms.

The experiments collectively support our hypothesis that
the attack scenario is primarily defined by the attacker host
and the attack tool. We have shown as long as the some
link (usually the first hop) in the path remains saturated, the
spectral behavior will not change. Therefore, the attacker must
reduce the attack rate to below saturation for each zombie
individually in order to alter the attack fingerprint.
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Fig. 8. Effect of cross traffic on the attack spectra

VI. ROBUSTNESS TO COUNTERMEASURES

In the previous section we performed a detailed evaluation
of how systematic environmental factors and noise effect the
fingerprint. We showed that the attack spectra is robust to most
environmental changes and hence can be used effectively to
fingerprint an attack. However, a DoS attacker is adversarial,
so we next consider how a sophisticated attacker might change
their attacks to alter their fingerprint.

Similar to most protection systems, our fingerprinting sys-
tems is also vulnerable to active countermeasures. We show
our system is robust to small adversarial countermeasures, and
that the deployment of such a system raises the bar on the
amount of effort required on part of the adversary to evade
identification.

Attack root-kits are easy to create and and could consists
of a number of different attack tools with configurable options
to control parameters such as:
• Attack tools
• Number of zombies
• Attack send rate
• Location of zombies
• Start time
• Packet size

We next consider how each of these parameters affect the
performance of our fingerprinting system.

a) Change in attack tool: A common theme in our
studies from Section V is that the limiting resource dominates
the attack spectra. We observe that if the network is the
limiting resource and the attacker does not change the packet
size, then the fingerprint is insensitive to change in the attack
tool, attack rate, or the number of zombies. However, if the
attack tool is the limited resource, then the change would
create different spectra and we must treat the new attack as a
different attack scenario with a different fingerprint.

b) Change in number of zombies: The attacker may
invoke different number of zombies for a repeated attack to
increase or reduce the attack rate. We believe that this will
affect the attack fingerprint only if the size of the attack
troop is changed significantly. We use simulation to test the
effect of small changes in the attack troop on the fingerprint.
We first create multiple attack streams each consisting of
40 byte UDP packets at an approximately rate 450pkts/sec
(saturation capacity of a 128kb/s ADSL uplink). We then
create a large attack by merging 50 such attack streams using

techniques described by Kamath and Rupp et al [15], [25].
The attack fingerprint has a peak frequency at 22500Hz. We
then randomly remove 1–3 streams from the aggregate attack
stream and test the resulting attack fingerprint for a match
(figure omitted due to space constraints). We observe that good
matches with low accuracy and precision values of 2(6) for
49 zombies, 5(9) for 48 zombies, and 7(12) for 47 zombies
when compared to the attack fingerprint of the original attack.
When we remove more than five zombies, which is equal to
10% change in the number of zombies, we observe poor match
values.

Thus the system is robust to small changes in the attack
troop. However, if there are large changes in the attack troop
then we must treat the new attack as a different attack scenario
with a different fingerprint.

c) Change in attack send rate: Fine control over attack
send rate is not necessarily easy. Most attack tools are defined
to send as fast as possible. Assuming the attacker is willing
to reduce attack effectiveness by reducing the attack rate, we
observed that by simply adding a microsecond sleep can sub-
stantially reduce the packet send rate by 3000-5000pkts/sec.
For attack tools already designed to control rate, we expect
that minor changes correspond to minor shifts in the spectra
as when we consider changes in packet size below.

d) Change in zombie location: Next, we consider the
effect of the attacker changing zombie location, but keeping
the number of zombies approximately the same. We believe
this will affect the signature only if a substantial number of the
replacement zombies have a different limiting resource, such
as additional network capacity or CPU power (whichever is
limiting). If the limiting resource changes then we must treat
the new attack as a different attack scenario with a different
fingerprint.

e) Change in start time: Changing the location or start
time of the attack could affect the fingerprint by changing
interferences from cross traffic. If cross-traffic were a limiting
resource this would change the fingerprint, or traffic might
cause enough noise to make matches unlikely. In our evalua-
tion of real-world attacks (Section IV-C) we showed successful
matches from several several attacks occurring at different
times of the day, for example, attacks M, N,O, and P occur
over a period of six hours with attack M starting at 1pm
and attack P starting a 7pm. This example suggests that, at
least in some cases, cross traffic is not the limiting resource.
Additionally, in Section V-H we conduct testbed experiments



to show that the attack fingerprint does not change when the
cross-traffic is less than 60% of the link capacity. Since current
ISP operating practices are to run the core network at low
utilization, it seems unlikely that cross-traffic will reach these
levels at the core. If a new attack location causes saturation
of different link, the link will likely be near the source or
the victim. Should a new link near the source be saturated it
will bring the attention of the network operator at the source,
reducing any stealthiness of the attack. Often times saturating
the victim’s network connection is a goal; we expect that many
fingerprints will include a saturated victim link.

f) Change in packet size: Finally, the attacker can easily
change the packet size in the attack streams. Doing so alters
the signature. An attacker would therefore like to try as many
packet sizes as possible. However, an attacker’s options are
somewhat limited for several reasons. First, small changes in
packet size correspond to only small shifts in the fingerprint.
We show this by conducting a set of testbed experiment using
the setup described in Section V. We programmed a Type I
attack tool to control the attack packet size and then conducted
three sets of experiments on FM1 machines to change the
default attack packet size of 40 bytes to 45, 47, and 50 byte
packets. Due to the increase in packet size, the Type I tool now
generates a slightly lower attack rate of 14600-14200pkts/sec.
This results in a small shift to a lower peak frequency of
14500Hz (figure omitted due to space constraints). We then
applied the attack fingerprinting algorithm on the new finger-
prints and observed good matches with small low and range
values of 5(11) for 45B attack packet, 7(20) for 47B attack
packet, and 10(32) for 50B attack packets when compared with
the default packet size of 40B. The values indicate an accurate
and precise match and therefore imply that the fingerprinting
technique is not sensitive to small variations in packet size.

Therefore attackers must make large changes in packet sizes
to generate a new fingerprint. Second, distribution of packet
sizes in the Internet is trimodal, with packets around 40,
550, and 1500 bytes common and intermediate sizes much
rarer [10]. Streams of unusual packet sizes (say, 1237B) could
be easily detected through other means, should they become
commonly used to spoof fingerprints. Therefore there are
relatively few choices for an attacker to change to. Should
this countermeasure become common, we would need to log
three times the number of fingerprints, one for each packet
size.

The discussion above clearly suggests that our system is
robust to small changes in attack parameters. In the worst case,
for large changes, we must build up separate fingerprints for
each attack configuration. Our approach there will raise the
bar and force much more sophisticated attack approaches.

There is an inherent tension between the ability to be
robust to noise or countermeasures and being sensitive enough
to distinguish between different attack groups. An addition
contribution of this work is to begin to explore this trade-off
and highlight it as an area of potential future exploration.

VII. FUTURE WORK

Our system uses statistical pattern matching techniques to
identify repeated attacks. As such the quality of the results
depend on environmental factors and algorithm parameters. In
this section we discuss techniques we would like to explore
in the future that could strengthen our algorithm.

Number of features: The success of the matching algo-
rithm depends largely on the feature data. In Section III-C,
we use dominant twenty spectral frequencies as the features
and discuss the effect of feature size on the quality of the
match results. This approach seems to capture most of the
important features in the attack spectra, however, as future
work we hope to re-evaluate the feature data once again when
the attack database increases in size. In addition to varying the
number of frequencies, we would also like to group adjacent
frequencies as one feature. This approach may be more robust
to noisy data.

Alternate feature definitions and classification algo-
rithms: Alternative definitions should also be explored. Other
features might include the complete spectra, wavelet-based
energy bands, certain fields of the packet header, or inter-
arrival rate, to create unique fingerprints. These fingerprints
may be more robust and be able to handle a larger variety of
attacks, that our current technique cannot handle. Additionally,
there are many additional statistical clustering techniques that
can be applied to identify repeated attacks [6]. We are currently
evaluating wavelet-based feature algorithms and automated
clustering algorithms for classification.

Higher sampling rates: We currently compute spectra from
timeseries evaluated based on sampling bins of fixed size p.
Changing p will affects the algorithms since more detailed
sampling will generate higher frequency spectra. Particularly
with single-source attacks, more “interesting” behavior will be
at high frequencies. Sampling at a higher rate may improve
identification of such attacks.

Stability and Portability: Another important research ques-
tion we need to explore when creating an attack fingerprint
database is the level of temporal stability that is required for
fingerprinting. Traffic usage patterns and volume change dy-
namically in the Internet varying the composition and quantity
of cross traffic. If the fingerprint is sensitive to this variability,
the database will need to be recycled periodically and will
not provide accurate results. We will attempt to answer such
questions by gathering more real-world attacks over a longer
period. Also ideally, fingerprints could be “portable”, so that
fingerprints taken at different monitoring sites could be com-
pared to identify the attack scenarios with victims in different
edge networks. It is plausible that signatures generated at two
different monitoring sites would be similar if the sites were
“similar enough”. Characterization of “enough” is an open
area.

VIII. CONCLUSION

In this paper we proposed an attack fingerprinting system
to identify instances of repeated attack scenarios on the
network. We applied pattern matching techniques making



use of the maximum-likelihood classifier to identify repeated
attack scenarios in 18 attacks captured at a regional ISP.
We observed seven attacks that are probably repeated attack
scenarios and our hypothesis is also corroborated with packet
header information gathered from the attack stream.

Additionally, we performed a systematic experimental study
of environmental factors that affect the attack stream. We
conducted a battery of controlled experiments that allow us
to isolate various factors, such as, attack tool, OS, CPU
speed, host load, and cross traffic, that may affect the attack
fingerprint. Our study indicates that spectral fingerprint is
primarily defined by the attacking host and the tool, however,
the network influences the fingerprint when it is saturated.

We also performed a detailed analysis of the robustness of
the attack fingerprint to active adversarial countermeasures,
such as, change in attack send rate, number of zombies,
location of zombies, start time, and packet size. The analysis
suggests that our system is robust to small changes in attack
parameters and in the worst case, for large changes, we must
build separate fingerprints for each attack configuration.

Denial of service attacks today are used for extortion, cyber-
vandalism, and at times even to disrupt competitor websites.
We believe our system provides a new tool that can be used
to assist in criminal and civil prosecution of the attackers.
Such a system would greatly enhance network traffic forensic
capabilities and aid in investigating and establishing attribution
of the DoS attacks seen on the Internet.
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