

Program Verification (Rosen, Sections 5.5)

TOPICS

- Program Correctness
- Preconditions & Postconditions
- Program Verification
 - Assignment Statements
 - · Conditional Statements
 - Loops
- · Composition Rule

Proofs about Programs

- Why make you study logic?
- Why make you do proofs?
- Because we want to prove properties of programs
 - In particular, we want to prove properties of variables at specific points in a program

Isn't testing enough?

- Assuming the program compiles, we perform some amount of testing.
- Testing shows that for specific examples the program seems to be running as intended.
- Testing can only show existence of some bugs but cannot exhaustively identify all of them.
- Verification can be used to prove the correctness of the program with any input.

Software Testing

- Levels
 - Unit, module, integration, system testing
- Methods
 - Black-box, white-box
- Types
 - Functionality, Configuration, Usability,
 Performance, Compatibility, Error, Localization, ...
- Processes
 - Automation, write test code first, code coverage, ...

Program Verification

- We consider a program to be correct if it produces the expected output for all possible inputs.
- Domain of input values can be very large, how many possible values of an integer?

int multiply (int operand1, int operand2)
 return operand1 * operand2
// operand1 = 2^32, operand2 = 2^32

- Instead we can formally specify program behavior, then use techniques for inferring correctness.
- · For example, we can use logic techniques

Program Correctness Proofs

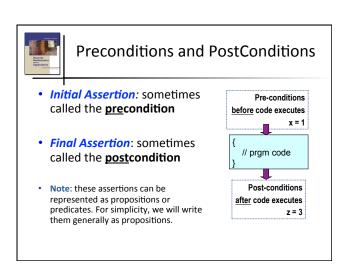
- Two parts:
 - Correct answer when the program terminates (called partial correctness)
 - The program does terminate
- We will only do part 1
 - Prove that a method is correct if it terminates
- Part 2 has been shown to be impossible!

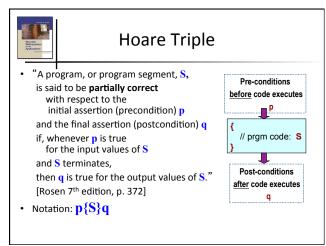
Predicate Logic and Programs

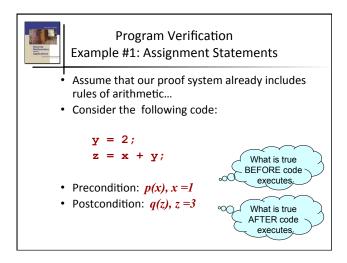
- Variables in programs are like variables in predicate logic:
 - They have a domain of discourse (data type)
 - They have values (drawn from the data type)
- Variables in programs are different from variables in predicate logic:
 - Their values change over time

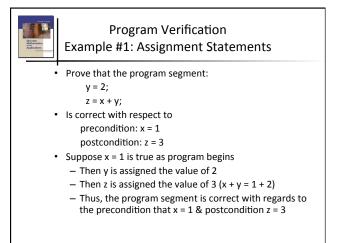
Assertions

- Two parts:
 - Initial Assertion: a statement of what must be true about the input values or values of variables at the beginning of the program segment
 - E.g Method that determines the sqrt of a number, requires the input (parameters) to be >= 0
 - Final Assertion: a statement of what must be true about the output values or values of variables at the end of the program segment
 - E.g. What is the output/final result after a call to the method?









Program Verification Example #2: Assignment Statements

• Prove that the program segment:

x = 2; z = x * y;

Is correct with respect to

precondition: y >= 1

postcondition: z >= 2

- Suppose y >= 1 is true as program begins
 - Then x is assigned the value of 2
 - Then z is assigned the value of x * y which is 2*(y>=1) which makes z >= 2
 - Thus, the program segment is correct for precondition y >= 1 and postcondition z >= 2

Program Verification Example #3: Assignment Statements

Prove that the program segment:

y = x * x + 2*x - 5

Is correct with respect to precondition: -4 <= x <= 1 postcondition: -6 <= y <= 3

- Suppose -4 <= x and x <=3 as the program begins
 - If x = -4 then y is assigned (-4)*(-4) + 2*(-4) 5 = 3
 - If x = -3 then y is assigned (-3)*(-3) + 2*(-3) 5 = -2
 - If x = -2 then y is assigned (-2)*(-2) + 2*(-2) 5 = -5
 - If x = -1 then y is assigned (-1)*(-1) + 2*(-1) -5 = -6
 - If x = 0 then y is assigned (0)*(0) + 2*(0) -5 = -5
 - If x = 1 then y is assigned $(1)^*(1) + 2^*(1) 5 = -2$
- Thus, program segment is correct for precondition -6 <= y <= 3

- - or - {-6, -5, -2, 3}

Program Verification Example #4: Assignment Statements

Given the following program segment:

// precondition: -3 < x <= 3

v = x * x - 3*x + 4

What is the postcondition for y?

Suppose -3 <= x and x <=4 as the program begins

- If x = -2 then y is assigned $(-2)^*(-2) 3^*(-2) + 4 = 14$
- If x = -1 then y is assigned (-1)*(-1) 3*(-1) + 4 = 8
- If x = 0 then y is assigned (0)*(0) 3*(0) + 4 = 4
- If x = 1 then y is assigned (1)*(1) 3*(1) + 4 = 2 - If x = 2 then y is assigned (2)*(2) - 3*(2) + 4 = 2
- If x = 2 then y is assigned (3)*(3) 3*(3) + 4 = 4

Thus, the postcondition for y is $2 \le y \le 14$

Rule 1: Composition Rule

- Once we prove correctness of program segments, we can combine the proofs together to prove correctness of an entire program.
- This is like the hypothetical syllogism inference rule

Pre-conditions
before code executes

p

{ // prgm code: S1
}

Post-conditions
after code executes
Is pre-condition for next

q

{ // prgm code: S2
}

Post-conditions

after code executes

Program Verification Example #1: Composition Rule

- Prove that the program segment (swap):
 - t = x;
 - x = y;
 - y = t;
- Is correct with respect to precondition: x = 7, y = 5 postcondition: x = 5, y = 7

Program Verification Example #1 (cont.): Composition Rule

- Program segment:
 - t = x; x = y; y = t;
- Suppose x = 7 and y = 5 is true as program begins
 - // Precondition: x = 7, y = 5
 - t = x
 - // Postcondition: t = 7, x = 7, y = 5
 - // Precondition: t = 7, x = 7, y = 5
 - x = y
 - // Postcondition: t = 7, x = 5, y = 5
 - // Precondition: t = 7, x = 5, y = 5
 - y = t
 - // Postcondition: t = 7, x = 5, y = 7
 - $-\,$ Thus, the program segment is correct with regards to the precondition that x = 7 & y =5 $\,$ & postcondition x = 5 and y = 7

Rule 2: Conditional Statements

- Given
 - if (condition)

statement;

With precondition: \emph{p} and postcondition: \emph{q}

- Must show that
 - Case 1: when p (precondition) is true and condition is true then q (postcondition) is true, when S (statement) terminates
 - Case 2: when p is true and condition is false, then q is true
 (5 does not execute)

Conditional Rule: Example #1

Verify that the program segment:

if
$$(x > y) y = x$$
;

Is correct with respect to precondition T and postcondition that y >= x

Consider the two cases...

- 1. Condition (x > y) is true, then y = x
- 2. Condition (x > y) is false, then that means x <= y

Thus, if precondition is true, then y = x or x <= y which means that the postcondition that y >= x is true

Conditional Rule: Example #2

Verify that the program segment:

if (x % 2 == 1) x = x + 1

Is correct with respect to precondition T (state of program is correct as enter this program segment) and postcondition that x is even

Consider the two cases...

- 1. Condition (x % 2 equals 1) is true, then x is odd. If x is odd, then adding 1 means x is even
- 2. Condition (x % 2 equals 1) is false, then x is even. Thus, if precondition is true, then x is even or x is even which means that the postcondition that x is even is true

Rule 2a: Conditional with Else

if (condition)

s1;

else

S2;

- · Must show that
 - Case 1: when p (precondition) is true and condition is true then q (postcondition) is true, when S1 (statement) terminates

OR

 Case 2: when p is true and condition is false, then q is true, when 52 (statement) terminates

Conditional Rule: Example #3

Verify that the program segment:

if (x < 0) abs = -x; else abs = x;

Is correct with respect to precondition T and postcondition that abs is the absolute value of $\boldsymbol{\boldsymbol{x}}$

Consider the two cases...

- 1. Condition (x < 0) is true, then x is negative. Assigning abs the negative of a negative number, means abs is the absolute value of x
- 2. Condition (x < 0) is false, then x >= 0 which means x is positive. Assigning abs a positive number, means abs is the absolute value of x. Thus, if precondition is true, abs is absolute value of x or absolute value of x. Thus the postcondition that abs is the absolute value of x is true

Conditional Rule: Example #4

Verify that the program segment:

if (balance > 100) nbalance= balance *1.02 else nbalance= balance * 1.005

Is correct with respect to precondition balance > 0 and postcondition that ((balance > 100) && (nbalance = balance * 1.02)) ||

((balance <= 100) && (nbalance= balance * 1.005))

Consider the two cases...

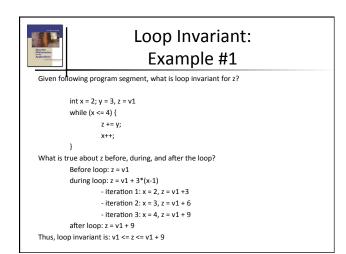
- 1. Condition (balance > 100) is true, then assign nbalance to balance*1.02
- 2. Condition (balance > 100) is false, then assign nbalance to

balance* 1.005

Thus, if precondition of balance > = 0 is true, (balance > 100 and nbalance = balance * 1.02) or (balance <= 100 and nbalance = balance * 1.005). Thus the postcondition is proven

How to we prove loops correct?

- General idea: loop invariant
- Find a property that is true before the loop
- Show that it must still be true after every iteration of the loop
- Therefore it is true after the loop




```
Loop Invariant:
                                    Example #3
Given following program segment, what is loop invariant for factorial, i?
          // precondition: n >= 1
          i = 1;
          factorial = 1;
          while (i < n) {
                    j++;
                    factorial *= i;
What is true about i and factorial before, during, and after the loop?
          Before loop: i = 1 and because n >= 1, then i <= n
                     factorial = 1 = 1! = i!
          during loop: i < n
                      factorial = i!
          after loop: i = n and because i = n, we know i <= n
                    factorial = i! and because i = n, factorial = i! = n!
Thus, loop invariant is: i <= n; factorial = i!
Verified that program segment terminates with factorial = n!
```