Program Verification
(Rosen, Sections 5.5)

TOPICS
* Program Correctness
* Preconditions & Postconditions
* Program Verification
* Assignment Statements
» Conditional Statements
* Loops
» Composition Rule

Proofs about Programs

]
* Why make you study logic?
* Why make you do proofs?

* Because we want to prove properties of
programs

— In particular, we want to prove properties of
variables at specific points in a program

Isn’t testing enough?

I
* Assuming the program compiles, we perform
some amount of testing.

* Testing shows that for specific examples the
program seems to be running as intended.

* Testing can only show existence of some bugs
but cannot exhaustively identify all of them.

* Verification can be used to prove the
correctness of the program with any input.

Software Testing

* Levels
— Unit, module, integration, system testing
* Methods
— Black-box, white-box
* Types
— Functionality, Configuration, Usability,
Performance, Compatibility, Error, Localization, ...
* Processes
— Automation, write test code first, code coverage, ...

Program Verification

We consider a program to be correct if it produces the expected
output for all possible inputs.

Domain of input values can be very large, how many possible
values of an integer?

int multiply (int operandl, int operand2)
return operand1 * operand2
// operandl = 232, operand2 = 2432

Instead we can formally specify program behavior, then use
techniques for inferring correctness.

For example, we can use logic techniques

Program Correctness Proofs

1
* Two parts:

— Correct answer when the program terminates
(called partial correctness)

— The program does terminate

* We will only do part 1

— Prove that a method is correct if it terminates

* Part 2 has been shown to be impossible!

Predicate Logic and Programs

. Vallfiables in programs are like variables in
predicate logic:
— They have a domain of discourse (data type)
— They have values (drawn from the data type)

* Variables in programs are different from
variables in predicate logic:

— Their values change over time

Assertions

Two parts:

— Initial Assertion: a statement of what must be true about

the input values or values of variables at the beginning of
the program segment

* E.g Method that determines the sqrt of a number, requires the
input (parameters) to be >=0

— Final Assertion: a statement of what must be true about

the output values or values of variables at the end of the
program segment

* E.g. What is the output/final result after a call to the method?

* Initial Assertion: sometimes Pre-conditions
called the precondition | before code executes
i x=1
,,,,,,,,,,,,, l
* Final Assertion: sometimes {
called the postcondition) /I'prgm code
i

* Note: these assertions can be
represented as propositions or
predicates. For simplicity, we will write 2=3
them generally as propositions.

Post-conditions
after code executes

Hoare Triple

. “A pr!)gram, or program segment, S,
is said to be partially correct
with respect to the
initial assertion (precondition) p

Pre-conditions
| before code executes

and the final assertion (postcondition) q {
if, whenever p is true /I prgm code: §
for the input values of S }
and S terminates, . tld't'
then q is true for the output values of S.” ost-eonditions
. after code executes
[Rosen 7t edition, p. 372] q

* Notation: p{S}q

Program Verification
Example #1: Assignment Statements

Assume that our proof system already includes
rules of arithmetic...

Consider the following code:

y = 2;
z X +y;

What is true
BEFORE code

Precondition: p(x), x =1
Postcondition: ¢(z), =3« (" whatis true

AFTER code
executes,

Program Verification
Example #1: Assignment Statements

* Prove that the program segment:
y=2;
Z=X+Yy;
* Is correct with respect to
precondition: x=1
postcondition: z=3
* Suppose x = 1 is true as program begins
— Then y is assigned the value of 2
— Then z is assigned the value of 3 (x +y=1+2)

— Thus, the program segment is correct with regards to
the precondition that x = 1 & postconditionz =3

Program Verification
Example #2: Assignment Statements

* Prove that the program segment:
X=2;
z=x*y;
* |s correct with respect to
precondition: y >=1
postcondition: z >= 2
* Supposey >=1is true as program begins
— Then x is assigned the value of 2

— Then z is assigned the value of x * y which is 2*(y>=1)
which makes z >= 2

— Thus, the program segment is correct for precondition

Program Verification
Example #3: Assignment Statements

* Prove that the program segment:
y=x*x+2*x-5
* Is correct with respect to
precondition: -4 <=x<=1
postcondition: -6 <=y <=3
* Suppose -4 <= x and x <=3 as the program begins
— If x=-4 thenyis assigned (-4)*(-4) + 2*(-4) -5=3
— If x=-3 thenyis assigned (-3)*(-3) + 2*(-3) - 5=-2
— If x=-2theny is assigned (-2)*(-2) + 2*(-2) - 5=-5
— Ifx=-1thenyis assigned (-1)*(-1) + 2*(-1) -5=-6
— If x=0thenyis assigned (0)*(0) + 2*(0) -5 =-5
— Ifx=1thenyis assigned (1)*(1) + 2*(1)-5=-2
¢ Thus, program segment is correct for precondition -6 <=y <=3

y >=1 and postcondition z >= 2 — -or-{6,-5,-2,3}
P Verificati Rule 1: Pre-conditions
rogra m. erimcation * before code executes
Example #4: Assignment Statements Composmon Rule '
T
)] . {
Given the followmg.p_rogram segment: « Once we prove correctness of /1 prgm code: $1
// precondition: -3 <x <=3
yExX*X-3*+4 program segments, we can T
What is the postcondition for y? combine the proofs together to C Fostoondiions]
prove correctness of an entire | after code executes |
Suppose -3 <= x and x <=4 as the program begins | ore- dition f t
— Ifx=-2thenyisassigned (-2)*(-2) - 3*(-2) + 4= 14 program. S pre-condition for nex
— Ifx=-1thenyis assigned (-1)*(-1) - 3*(-1) +4 =8 e This is like the hypothetical ER— lq ,,,,,,,,,,, !

— If x=0thenyis assigned (0)*(0) - 3*(0) +4 =4
— Ifx=1thenyisassigned (1)*(1) - 3*(1) +4 =2
— Ifx=2thenyisassigned (2)*(2) - 3*(2) +4=2
— Ifx=2thenyis assigned (3)*(3)-3*(3)+4=4

Thus, the postcondition fory is 2 <=y <= 14

syllogism inference rule
// prgm code: S2

i |

Post-conditions
after code executes
r

Program Verification
Example #1: Composition Rule

T
* Prove that the program segment (swap):
t=x;
X=y;
y=t
* s correct with respect to
precondition: x=7,y=5
postcondition: x=5,y =7

Program Verification
Example #1 (cont.): Composition Rule

* Program segment:
t=x;x=y;y=t;
* Suppose x =7 andy =5 is true as program begins
— // Precondition: x=7,y=5
*t=x
— // Postcondition: t=7,x=7,y=5
— // Precondition: t=7,x=7,y=5
. x=y
— // Postcondition: t=7,x=5,y=5
— // Precondition: t =7,x=5,y=5
o y=t
— // Postcondition: t=7,x=5,y=7
— Thus, the program segment is correct with regards to the
precondition that x =7 & y =5 & postconditionx=5andy =7

Rule 2:
Conditional Statements

Given
if (condition)
statement;
With precondition: p and postcondition: g
Must show that
— Case 1: when p (precondition) is true and condition is true
then g (postcondition) is true, when S (statement) terminates
OR
— Case 2: when p is true and condition is false, then q is true
(S does not execute)

Conditional Rule:
Example #1

I
Verify that the program segment:
if (x>y)y=x;

Is correct with respect to precondition T and postcondition
thaty >=x

Consider the two cases...
1. Condition (x >y) is true, theny = x
2. Condition (x >y) is false, then that means x <=y

Thus, if precondition is true, then y =x or x <=y which means
that the postcondition that y >=x is true

Conditional Rule:
Example #2

|
Verify that the program segment:
if(x%2==1)x=x+1

Is correct with respect to precondition T (state of program is correct
as enter this program segment) and postcondition that x is even

Consider the two cases...

1. Condition (x % 2 equals 1) is true, then x is odd. If x is odd,
then adding 1 means x is even

2. Condition (x % 2 equals 1) is false, then x is even.
Thus, if precondition is true, then x is even or x is even which means
that the postcondition that x is even is true

Rule 2a:
Conditional with Else

if (condition)
Ss1;
else
S2;
* Must show that
— Case 1: when p (precondition) is true and condition is
true then g (postcondition) is true, when S1
(statement) terminates
OR
— Case 2: when pis true and condition is false, then g is
true, when S2 (statement) terminates

Conditional Rule:
Example #3

Verif',' that the program segment:
if (x < 0) abs = -x;
else abs = x;

Is correct with respect to precondition T and postcondition that abs is the
absolute value of x

Consider the two cases...

1. Condition (x < 0) is true, then x is negative. Assigning abs the
negative of a negative number, means abs is the absolute value of x

2. Condition (x < 0) is false, then x >= 0 which means x is positive.
Assigning abs a positive number, means abs is the absolute value of x
Thus, if precondition is true, abs is absolute value of x or absolute value of
X. Thus the postcondition that abs is the absolute value of x is true

Conditional Rule:
Example #4

Verif',' that the program segment:
if (balance > 100) nbalance= balance *1.02

else nbalance= balance * 1.005

Is correct with respect to precondition balance > = 0 and postcondition that
((balance > 100) && (nbalance = balance * 1.02)) | |
((balance <= 100) && (nbalance= balance * 1.005))
Consider the two cases...
1. Condition (balance > 100) is true, then assign nbalance to balance*1.02
2. Condition (balance > 100) is false, then assign nbalance to
balance* 1.005
Thus, if precondition of balance > = 0 is true, (balance > 100 and nbalance =
balance * 1.02) or (balance <= 100 and nbalance = balance * 1.005). Thus
the postcondition is proven

Loop Invariant:
Example #1

Given following program segment, what is loop invariant for z?

How to we prove loops
correct?

]
* General idea: loop invariant

* Find a property that is true before the loop L:;::(i;v:;;"'(z:vl
* Show that it must still be true after every z4=y;
iteration of the loop) *h
e Therefore itis true after the Ioop What is true about z before, during, and after the loop?

Before loop: z =v1
during loop: z = v1 + 3%(x-1)
-iteration 1: x=2,z=v1+3
-iteration2:x=3,z=v1+6
-iteration3:x=4,z=v1+9
after loop:z=v1+9
Thus, loop invariantis: vl<=z<=v1+9

. .
Loop Invariant: Loop Invariant:
Given follbwing program segment, what is loop invariant for x, y, 22 Given follbwing program segment, what is loop invariant for factorial, i?
intx=1;y=2;z=-5 // precondition: n >=1
while (x <= 5) { i=1;
z+=y; factorial = 1;
X+t while (i<n){
} i++;
What is true about x, y, z before, during, and after the loop? factorial *=i;
Before loop: x=1,y=2,z=-5 }
during loop: 1 <=x<=6;y =2;2=-5+2%(x) What is true about i and factorial before, during, and after the loop?
Iteration1:x=1,z=-3 Before loop: i = 1 and because n >= 1, then i <=n
Iteration 2:x=2,z=-1 factorial =1=11=i!
Iteration 3:x=3,z=1 during loop:i<n
Iteration4:x=4,z=3 factorial = i!
Iteration 5:x=5,2=5 after loop: i = n and because i = n, we know i <=n
after loop: x=6;y=2; z=5 factorial = il and because i = n, factorial = i! = n!
Thus, loop invariant is: 1 <=x <=6;y = 2; -5 <=z<=5 Thus, loop invariant is: i <= n; factorial = i!
Verified that program segment terminates with factorial = n!

