

Inference Rules (Rosen, Section 1.5)

TOPICS

- Logic Proofs
- ♦ via Truth Tables

Propositional Logic Proofs

- An argument is a sequence of propositions:
 - ♦ Premises (Axioms) are the first n propositions
 - ♦ Conclusion is the final proposition.
- An argument is *valid* if $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$ is a tautology, given that p_i are the premises (axioms) and q is the conclusion.

Proof Method #1: Truth Table

- If the conclusion is true in the truth table whenever the premises are true, it is proved
 - Warning: when the premises are false, the conclusion my be true or false
- Problem: given n propositions, the truth table has 2ⁿ rows
 - Proof by truth table quickly becomes infeasible

3

Example Proof by Truth Table

 $s = ((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$

p	q	r	¬р	pvq	¬р∨г	qvr	(p v q)∧ (¬p v r)	S
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	1
1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	0	1
1	1	1	0	1	1	1	1	1

Proof Method #2: Rules of Inference

- A rule of inference is a pre-proved relation: any time the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match a premise to the LHS (by substituting propositions), we can assert the (substituted) RHS

5

Inference properties

- Inference rules are truth preserving
 - If the LHS is true, so is the RHS
- Applied to true statements
 - Axioms or statements proved from axioms
- Inference is syntactic
 - Substitute propositions
 - if p replaces q once, it replaces q everywhere
 - If p replaces q, it only replaces q
 - Apply rule

Example Rule of Inference

Modus Ponens

Modus Ponens
$$p$$

$$(p \land (p \rightarrow q)) \rightarrow q \qquad \qquad \frac{p \rightarrow q}{\therefore q}$$

$$\therefore q$$

$$p \to q$$

p	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$(p \land (p \rightarrow q)) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

7

Rules of Inference

Rules of Inference

Modus Ponens

Modus Tollens

Hypothetical Syllogism

$$p \rightarrow q$$

$$p \rightarrow c$$

$$p \to q$$

$$q \to r$$

$$p \to r$$

Addition

Resolution

Disjunctive Syllogism

$$\frac{p}{p \vee q}$$

$$p \vee q$$
 $\frac{\neg p \vee r}{q \vee r}$

Simplification

Conjunction

$$\frac{p \wedge q}{p}$$

$$\frac{p}{p \wedge q}$$

Logical Equivalences

Logical Equivalences

Idempotent Laws DeMorgan's Laws Distributive Laws

 $p \lor p \equiv p$ $p \land p \equiv p$ $\neg (p \land q) \equiv \neg p \lor \neg q$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $\neg (p \lor q) \equiv \neg p \land \neg q$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Double Negation Absorption Laws Associative Laws

 $\neg(\neg p) \equiv p \qquad p \lor (p \land q) \equiv p \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \land (p \lor q) \equiv p \qquad (p \land q) \land r \equiv p \land (q \land r)$

Commutative Laws Implication Laws Biconditional Laws

 $p \vee q \equiv q \vee p \hspace{1cm} p \rightarrow q \equiv \neg p \vee q \hspace{1cm} p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

 $p \wedge q \equiv q \wedge p$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

9

Modus Ponens

If p, and p implies q, then q

Example:

p = it is sunny, q = it is hot

 $p \rightarrow q$, it is hot whenever it is sunny

"Given the above, if it is sunny, it must be hot".

Modus Tollens

If not q and p implies q, then not p Example:

p = it is sunny, q = it is hot p \rightarrow q, it is hot whenever it is sunny "Given the above, if it is not hot, it cannot be sunny."

11

Hypothetical Syllogism

If p implies q, and q implies r, then p implies r

Example:

p = it is sunny, q = it is hot, r = it is dry p \rightarrow q, it is hot when it is sunny q \rightarrow r, it is dry when it is hot "Given the above, it must be dry when it is sunny"

Disjunctive Syllogism

If p or q, and not p, then q

Example:

p = it is sunny, q = it is hot

p v q, it is hot or sunny

"Given the above, if it not sunny, but it is hot or sunny, then it is hot"

13

Resolution

If p or q, and not p or r, then q or r Example:

p = it is sunny, q = it is hot, r = it is dry

p v q, it is sunny or hot

 $\neg p \lor r$, it is not hot or dry

"Given the above, if it is sunny or hot, but not sunny or dry, it must be hot or dry"

Not obvious!

Addition

If p then p or q

Example:

p = it is sunny, q = it is hot

p v q, it is hot or sunny

"Given the above, if it is sunny, it must be hot or sunny"

Of course!

15

Simplification

If p and q, then p

Example:

p = it is sunny, q = it is hot

p ∧ q, it is hot and sunny

"Given the above, if it is hot and sunny, it must be hot"

Of course!

Conjunction

If p and q, then p and q

Example:

p = it is sunny, q = it is hot

p ∧ q, it is hot and sunny

"Given the above, if it is sunny and it is hot, it must be hot and sunny"

Of course!

17

A Simple Proof

Given X, $X \rightarrow Y$, $Y \rightarrow Z$, $\neg Z \lor W$, prove W

	Step	Reason
1.	$x \rightarrow y$	Premise
2.	$y \rightarrow z$	Premise
3.	$x \rightarrow z$	Hypothetical Syllogism (1, 2)
4.	X	Premise
5.	\mathcal{Z}	Modus Ponens (3, 4)
6.	$\neg z \lor w$	Premise
7.	W	Disjunctive Syllogism (5, 6)

A Simple Proof

"In order to sign up for CS161, I must complete CS160 and either M155 or M160. I have not completed M155 but I have completed CS161. Prove that I have completed M160."

STEP 1) Assign propositions to each statement.

A: CS161B: CS160C: M155D: M160

19

Setup the proof

STEP 2) Extract axioms and conclusion.

- Axioms:
 - $A \rightarrow B \land (C \lor D)$
 - A
 - ¬C
- Conclusion:
 - D

Now do the Proof

STEP 3) Use inference rules to prove conclusion.

	Step	Reason
1.	$A \rightarrow B \land (C \lor D)$	Premise
2.	Α	Premise
3.	B Λ (C v D)	Modus Ponens (1, 2)
4.	CvD	Simplification
5.	¬C	Premise
6.	D	Disjunctive Syllogism (4, 5)

21

Another Example

Given:

Conclude:

$$p \rightarrow q$$

$$\neg q \rightarrow s$$

$$\neg p \rightarrow l$$

$$r \rightarrow s$$

Proof of Another Example

	Step	Reason
1.	$p \rightarrow q$	Premise
2.	$\neg q \rightarrow \neg p$	Implication law (1)
3.	$\neg p \rightarrow r$	Premise
4.	$\neg q \rightarrow r$	Hypothetical syllogism (2, 3)
5.	$r \rightarrow s$	Premise
6.	$\neg q \rightarrow s$	Hypothetical syllogism (4, 5)

23

Proof using Rules of Inference and Logical Equivalences

Prove: $\neg(p \lor (\neg p \land q)) \equiv (\neg p \land \neg q)$

$$\neg(p\lor(\neg p\land q)) \equiv \neg p \land \neg(\neg p\land q)$$
$$\equiv \neg p \land (\neg(\neg p)\lor \neg q)$$

$$p \wedge (\neg (\neg p) \vee \neg q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$
 By 2nd distributive

$$\equiv F \vee (\neg p \wedge \neg a)$$

$$= (\neg p \land \neg q) \lor F$$

$$\equiv (\neg p \land \neg q)$$

- By 2nd DeMorgan's
- By 1st DeMorgan's
- $\equiv \neg p \land (p \lor \neg q)$ By double negation
- \equiv F v $(\neg p \land \neg q)$ \blacksquare By definition of \land
- $\equiv (\neg p \land \neg q) \lor F$ By commutative law
 - By definition of v

Example of a Fallacy

q

$$(q \land (p \rightarrow q)) \rightarrow p \qquad \qquad \underline{p \rightarrow q}$$

$$\therefore \quad p$$

p	q	$p \rightarrow q$	$q \land (p \rightarrow q)$	$(q \land (p \rightarrow q)) \rightarrow p$
0	0	1	0	1
0	1	1	1	0
1	0	0	0	1
1	1	1	1	1

This is not a tautology, therefore the argument is not valid

Example of a fallacy

If q, and p implies q, then p

Example:

p = it is sunny, q = it is hot

 $p \rightarrow q$, if it is sunny, then it is hot

"Given the above, just because it is hot, does NOT necessarily mean it is sunny.