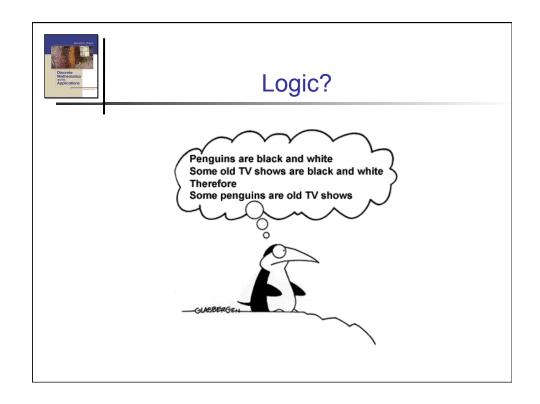


Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3)

TOPICS

- Propositional Logic
- Logical Operations
- Equivalences
- Predicate Logic



What is logic?

Logic is a truth-preserving system of inference

Truth-preserving:
If the initial
statements are
true, the inferred
statements will
be true

System: a set of mechanistic transformations, based on syntax alone

Inference: the process of deriving (inferring) new statements from old statements

Propositional Logic

- A proposition is a statement that is either true or false
- Examples:
 - This class is CS122 (true)
 - Today is Sunday (false)
 - It is currently raining in Singapore (???)
- Every proposition is true or false, but its truth value (true or false) may be unknown

Propositional Logic (II)

- A propositional statement is one of:
 - A simple proposition
 - denoted by a capital letter, e.g. 'A'.
 - A negation of a propositional statement
 - e.g. ¬A: "not A"
 - Two propositional statements joined by a connective
 - e.g. A ∧ B : "A and B"
 - e.g. A v B: "A or B"
 - If a connective joins complex statements, parenthesis are added
 - e.g. A ∧ (B∨C)

Truth Tables

- The truth value of a compound propositional statement is determined by its truth table
- Truth tables define the truth value of a connective for every possible truth value of its terms

Logical negation

- Negation of proposition A is ¬A
 - A: It is snowing.
 - ¬A: It is not snowing
 - A: Newton knew Einstein.
 - ¬A: Newton did not know Einstein.
 - A: I am not registered for CS195.
 - ¬A: I am registered for CS195.

Negation Truth Table

A	$\neg A$
0	1
1	0

Logical and (conjunction)

- Conjunction of A and B is A ∧ B
 - A: CS160 teaches logic.
 - B: CS160 teaches Java.
 - A Λ B: CS160 teaches logic and Java.
- Combining conjunction and negation
 - A: I like fish.
 - B: I like sushi.
 - I like fish but not sushi: A ∧ ¬B

Truth Table for Conjunction

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Logical or (disjunction)

- Disjunction of A and B is A v B
 - A: Today is Friday.
 - B: It is snowing.
 - A v B: Today is Friday or it is snowing.
- This statement is true if any of the following hold:
 - Today is Friday
 - It is snowing
 - Both
- Otherwise it is false

Truth Table for Disjunction

A	В	A vB
0	0	0
0	1	1
1	0	1
1	1	1

Exclusive Or

- The "or" connective v is inclusive: it is true if either or both arguments are true
- There is also an exclusive or ⊕

A	В	<i>A⊕B</i>
0	0	0
0	1	1
1	0	1
1	1	0

Confusion over Inclusive OR and Exclusive OR

- Restaurants typically let you pick one (either soup or salad, not both) when they say "The entrée comes with a soup or salad".
 - Use exclusive OR to write as a logic proposition
- Give two interpretations of the sentence using inclusive OR and exclusive OR:
 - Students who have taken calculus or intro to programming can take this class

Conditional & Biconditional Implication

- The conditional implication connective is →
- The biconditional implication connective is
- These, too, are defined by truth tables

A	В	<i>A →B</i>
0	0	1
0	1	1
1	0	0
1	1	1

\boldsymbol{A}	В	A⇔B
0	0	1
0	1	0
1	0	0
1	1	1

Conditional implication

- A: A programming homework is due.
- B: It is Tuesday.
- A → B:
 - If a programming homework is due, then it must be Tuesday.
 - A programming homework is due only if it is Tuesday.
- Is this the same?
 - If it is Tuesday, then a programming homework is due.

Bi-conditional

- A: You can drive a car.
- B: You have a driver's license.
- A ↔ B
 - You can drive a car if and only if you have a driver's license (and vice versa).
- What if we said "if"?
- What if we said "only if"?

Compound Truth Tables

■ Truth tables can also be used to determine the truth values of compound statements, such as $(A \lor B) \land (\neg A)$ (fill this as an exercise)

A	В	$\neg A$	AvB	$(A \lor B) \land (\neg A)$
0	0	1	0	0
0	1	1	1	1
1	0	0	1	0
1	1	0	1	0

Tautology and Contradiction

- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- A contingency is neither a tautology nor a contradiction.
- A compound proposition is satisfiable if there is at least one assignment of truth values to the variables that makes the statement true.

Examples

Α	¬A	Av¬A	A∧¬A
0	1	1	0
1	0	1	0

Result is always true, no matter what A is Therefore, it is a tautology

Result is always false, no matter what A is

Therefore, it is a contradiction

Logical Equivalence

- Two compound propositions, p and q, are logically equivalent if p ↔ q is a tautology.
- Notation: p = q
- De Morgan's Laws:
- $\cdot \neg (p \land q) \equiv \neg p \lor \neg q$
- $\cdot \neg (p \lor q) \equiv \neg p \land \neg q$
- How so? Let's build a truth table!

Prove
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

р	q	¬р	¬q	(p \(q \)	¬(p ^ q)	¬p v ¬q
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Show $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	¬р	¬q	(p v q)	¬(p vq)	¬p ^ ¬q
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Other Equivalences

- Show $p \rightarrow q = \neg p \lor q$
- Show Distributive Law:
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Show $p \rightarrow q = \neg p \lor q$

р	q	¬р	$p \rightarrow q$	¬p v q	
0	0	1	1	1	
0	1	1	1	1	
1	0	0	0	0	
1	1	0	1	1	

Show $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$

р	q	r	q ^ r	p v q	pvr	p v (q ^ r)	(p v q) ^ (p v r)
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

More Equivalences

Equivalence	Name
$ \begin{array}{c} p \wedge T = p \\ p \vee F = p \end{array} $	Identity
$p \land q = q \land p$ $p \lor q = q \lor p$	Commutative
$p \lor (p \land q) = p$ $p \land (p \lor q) = p$	Absorption

See Rosen for more.

Equivalences with Conditionals and Biconditionals

- Conditionals
- Biconditionals
 - $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $q \leftrightarrow q \Rightarrow \neg p \leftrightarrow q$ $q \leftrightarrow q \Rightarrow \neg p \leftrightarrow q$

Prove Biconditional Equivalence

р	q	¬q	$p \leftrightarrow q$	¬(p ↔ q)	p ↔ ¬q
0	0	1	1	0	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0

Converse, Contrapositive, Inverse

- The converse of an implication p → q reverses the propositions: q → p
- The *inverse* of an implication $p \rightarrow q$ inverts both propositions: $\neg p \rightarrow \neg q$
- The *contrapositive* of an implication $p \rightarrow q$ reverses and inverts: $\neg q \rightarrow \neg p$

The converse and inverse are not logically equivalent to the original implication, but the contrapositive is, and may be easier to prove.

Predicate Logic

- Some statements cannot be expressed in propositional logic, such as:
 - All men are mortal.
 - Some trees have needles.
 - X > 3.
- Predicate logic can express these statements and make inferences on them.

Statements in Predicate Logic

P(x,y)

- Two parts:
 - A predicate P describes a relation or property.
 - Variables (x,y) can take arbitrary values from some domain.
- Still have two truth values for statements (T and F)
- When we assign values to x and y, then P has a truth value.

Example

- Let Q(x,y) denote "x=y+3".
 - What are truth values of:
 - $\begin{array}{c} \bullet \ Q(1,2) \ \cdots \ \hline \bullet \ Q(3,0) \ \cdots \ \hline \end{array}$
- Let R(x,y) denote x beats y in Rock/Paper/ Scissors with 2 players with following rules:
 - Rock smashes scissors, Scissors cuts paper, Paper covers rock.
 - What are the truth values of:
 - R(rock, paper) ··· false
 - R(scissors, paper).... true

Quantifiers

- Quantification expresses the extent to which a predicate is true over a set of elements.
- Two forms:
 - Universal ∀
 - Existential 3

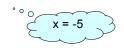
Universal Quantifier

- P(x) is true for all values in the domain∀x∈D, P(x)
- For every x in D, P(x) is true.
- An element x for which P(x) is false is called a *counterexample*.
- Given P(x) as "x+1>x" and the domain of R, what is the truth value of:

$$\forall x P(x)$$

Example

- Let P(x) be that x>0 and x is in domain of R.
- Give a counterexample for:
 ∀x P(x)



Existential Quantifier

 P(x) is true for <u>at least one value</u> in the domain.

 $\exists x \in D, P(x)$

- For some x in D, P(x) is true.
- Let the domain of x be "animals", M(x) be "x is a mammal" and E(x) be "x lays eggs", what is the truth value of:

Platypuses

echidnas

 $\exists x (M(x) \land E(x))$

English to Logic

- Some person in this class has visited the Grand Canyon.
- Domain of x is the set of all persons
- C(x): x is a person in this class
- V(x): x has visited the Grand Canyon
- \blacksquare $\exists x(C(x) \land V(x))$

English to Logic

- For every one there is someone to love.
- Domain of x and y is the set of all persons
- L(x, y): x loves y
- ∀x∃y L(x,y)
- Is it necessary to explicitly include that x and y must be different people (i.e. x≠y)?
 - Just because x and y are different variable names doesn't mean that they can't take the same values

English to Logic

- No one in this class is wearing shorts and a ski parka.
- Domain of x is persons in this class
 - S(x): x is wearing shorts
 - P(x): x is wearing a ski parka
 - $\neg \exists x (S(x) \land P(x))$
- Domain of x is all persons
 - C(x): x belongs to the class
 - $\neg \exists x (C(x) \land S(x) \land P(x))$

Evaluating Expressions: Precedence and Variable Bindings

- Precedence:
 - Quantifiers and negation are evaluated before operators
 - Otherwise left to right
- Bound:
 - Variables can be given specific values or
 - Can be constrained by quantifiers

Predicate Logic Equivalences

Statements are *logically equivalent* iff they have the same truth value under all possible bindings.

For example:

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

In English: "Given the domain of students in CS160, all students have passed M124 course (P) and are registered at CSU (Q); hence, all students have passed M124 and all students are registered at CSU.

Other Equivalences

 Someone likes skiing (P) or likes swimming (Q); hence, there exists someone who likes skiing or there exists someone who likes skiing.

$$\exists x \big(P(x) \vee Q(x) \big) \equiv \exists x P(x) \vee \exists x Q(x)$$

 Not everyone likes to go to the dentist; hence there is someone who does not like to go to the dentist.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

 There does not exist someone who likes to go to the dentist; hence everyone does not like to go to the dentist.

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$