

Why Study Discrete Math?
 - Digital computers are based on discrete units of data (bits).
 - Therefore, both a computer's
 - structure (circuits) and
 - operations (execution of algorithms) can be described by discrete math
 - A generally useful tool for rational thought! Prove your arguments.

Uses for Discrete Math in Computer Science

- Advanced algorithms \& data structures
- Programming language compilers \& interpreters.
- Computer networks
- Operating systems
- Computer architecture
- Database management systems
- Cryptography
- Error correction codes
- Graphics \& animation algorithms, game engines, etc....
- i.e., the whole field!

CS 160, Fall Semester 2015
4

E Example sets		
	Alphabet All characters Booleans: true, false Numbers: - $\boldsymbol{N}=\{0,1,2,3 \ldots\}$ - Natural numbers - $\boldsymbol{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ - Integers - $\boldsymbol{Q}=\{p / q \mid p \in Z, q \in Z, q \neq 0\}$ - Rationals - R, Real Numbers Note that: - \boldsymbol{Q} and \boldsymbol{R} are not the same. \boldsymbol{Q} is a subset of \boldsymbol{R}. - N is a subset of \boldsymbol{Z}.	
	CS 160, Fall Semester 2015	9

What is a set?

- Defining a set:
- Option 1: List the members
- Option 2; Use a set builder that defines set of x that hold a certain characteristic
- Notation: $\{x \in S \mid$ characteristic of $x\}$
- Examples:
- $A=\left\{x \in Z^{+} \mid x\right.$ is prime $\}-$ set of all prime positive integers

편
 Equality

- $\mathrm{A}=\mathrm{B}$ is used to show set equality
- Two sets are equal when they have exactly the same elements
- Thus for all elements x, x belongs to A if and only if (iff) x also belongs to B
- The if and only is a bidirectional implication that we will study later
- $O=\{x \in N \mid x$ is odd and $x<10000\}$ - set of odd natural numbers less than 10000

Set Operations: Union

- Operations that take as input sets and have as output sets
- The union of the sets A and B is the set that contains those elements that are either in A or in B, or in both.
- Notation: $A \cup B$
- Example: union of $\{1,2,3\}$ and $\{1,3,5\}$ is?

Answer: $\{1,2,3,5\}$
\qquad

Set Operations: Intersection

- The intersection of sets A and B is the set containing those elements in both A and B.
- Notation: $A \cap B$
- The sets are disjoint if their intersection produces the empty set.
- Example: $\{1,2,3\}$ intersection $\{1,3,5\}$ is?

Answer: $\{1,3\}$

Set Operations: Difference

- The difference of A and B is the set of elements that are in A but not in B .
- Notation: $A-B$
- Aka the complement of B with respect to A
- Can you define difference using union, complement and intersection?
- Example: $\{1,2,3\}$ difference $\{1,3,5\}$ is?

[^0]Set Operations: Complement

- The complement of $\operatorname{set} A$ is the complement of A with respect to U, the universal set.
- Notation: \bar{A}
- Example: If N is the universal set, what is the complement of $\{1,3,5\}$?
Answer: $\{0,2,4,6,7,8, \ldots\}$

| - The set A is a subset of B iff for all elements |
| :--- | :--- |
| x of A, x is also an element of B. |
| But not necessarily the reverse... |
| - Notation: $A \subseteq B$ |
| - $\{1,2,3 \subseteq\{1,2,3\}$ |
| - $\{1,2,3\} \subseteq\{1,2,3,4,5\}$ |
| - What is the relationship of the cardinality |
| between sets if $A \subseteq B$? $\|A\|<=\|B\|$ |

Subset

- Subset is when a set is contained in another set. Notation: \subseteq
- Proper subset is when A is a subset of B, but B is not a subset of A. Notation: \subset
- $\forall x((x \in A) \rightarrow(x \in B)) \wedge \exists x((x \in B) \wedge(x \notin A))$
- All values x in set A also exist in set B
- ... but there is at least 1 value x in B that is not in A
- $A=\{1,2,3\}, B=\{1,2,3,4,5\}$
$A \subset B$, means that $|A|<|B|$.
- Empty set has no elements and therefore is the subset of all sets: $\}$ or \varnothing
- Is $\varnothing \subseteq\{1,2,3\}$? - Yes!
- The cardinality of \varnothing is zero: $|\varnothing|=0$.
- Consider the set containing the empty set:
$\{\varnothing\}$
- Yes, this is indeed a set:

$$
\varnothing \in\{\varnothing\} \text { and } \varnothing \subseteq\{\varnothing\} \text {. }
$$

Quiz time:

- $A=\{x \in N \mid x \leq 2000\}$ What is $|A| ? 2001$
- $B=\{x \in N \mid x \geq 2000\}$ What is $|B|$? Infinite
- Is $\{x\} \subseteq\{x\}$? Yes
- Is $\{x\} \in\{x,\{x\}\}$? Yes
- Is $\{x\} \subseteq\{x,\{x\}\}$? Yes
- Is $\{x\} \in\{x\}$? No
\qquad

Powerset

- The powerset of a set is the set containing all the subsets of that set.
- Notation: $\boldsymbol{P}(\mathrm{A})$ is the powerset of set A .
- Fact: $|\boldsymbol{P}(\mathrm{A})|=2^{|\mathrm{A}|}$.
- If $A=\{x, y\}$, then $P(A)=\{\varnothing,\{x\},\{y\},\{x, y\}\}$
- If $\boldsymbol{S}=\{a, b, c\}$, what is $\boldsymbol{P}(\mathbf{S})$?

Powerset example

- Number of elements in powerset $=2^{n}$ where $\mathbf{n}=\#$ elements in set
- S is the set $\{\mathbf{a}, \mathrm{b}, \mathrm{c}\}$, what are all the subsets of S ?
- \{ \} - the empty set
- \{a\}, \{b\}, \{c\} - one element sets
- $\{a, b\},\{a, c\},\{b, c\}$ - two element sets
- $\{a, b, c\}$ - the original set
and hence the power set of S has $2^{3}=8$ elements:
$\{\},\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{c, a\},\{a, b, c\}\}$

$\begin{array}{r}\text { E } \\ = \\ \hline\end{array}$

- Consider binary numbers
- E.g. 0101
- Let every bit position $\{1, \ldots, n\}$ be an item
- Position i is in the set if bit i is 1
- Position i is not in the set if bit i is 0
- What is the set of all possible n-bit numbers?
- The powerset of $\{1, \ldots n\}$.

Tuples

- The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element a_{2} as its second element \ldots and a_{n} as its nth element.
- An ordered pair is a 2-tuple.
- Two ordered pairs (a,b) and (c,d) are equal iff $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$ (e.g. NOT if $a=d$ and $b=c$).
- A 3-tuple is a triple; a 5-tuple is a quintuple.

- Because ordered n-tuples are found as lists of arguments to functions/methods in computer programming.
- Create a mouse in a position $(2,3)$ in a maze: new Mouse $(2,3)$
- Can we reverse the order of the parameters?
- From Java, Math.min (1,2)
- In programming?
- Let's say you're working with three integer values, first is the office room \# of the employee, another is the \# years they've worked for the company, and the last is their ID number.
- Given the following set $\{320,13,4392\}$, how many years has the employee worked for the company?
- What if the set was $\{320,13,4392\}$? Doesn't $\{320,13,4392\}=\{320,4392,13\}$?
- Given the 3-tuple $(320,13,4392)$ can we identify the number of years the employee worked?

Cartesian Product

- Let A and B be sets. The Cartesian Product of A and B is the set of all ordered pairs (a, b), where $b \in B$ and $a \in A$
- Cartesian Product is denoted A x B.
- Example: $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. What is A x B and B x A?

[^0]: Answer: $\{2\}$

