Functions (Rosen, Section 2.3)

TOPICS

• Definition of Function
• Domain, Codomain, Range
• One-to-One Functions
• Increasing Functions

What’s the difference between codomain and range?
Range contains the codomain values that A maps to

Function Definitions

• A function f from sets A to B assigns exactly one element of B to each element of A.

• Example: the floor function

<table>
<thead>
<tr>
<th>Domain</th>
<th>Codomain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2.4</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>3</td>
</tr>
<tr>
<td>4.8</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Range: $\{1, 2, 4, 5\}$

Function Definitions

• In Programming
 – Function header definition example

    ```
    int floor(float real) {
    }
    ```

 • Domain = \mathbb{R}
 • Codomain = \mathbb{Z}
Other Functions

• The identity function, \(f_{id} \), on \(A \) is the function where: \(f_{id}(x) = x \) for all \(x \) in \(A \).
 \(A = \{a, b, c\} \) and \(f(a) = a, f(b) = b, f(c) = c \)

 ■ Successor function, \(f_{succ}(x) = x + 1 \), on \(Z \)
 • \(f(1) = 2 \)
 • \(f(-17) = -16 \)
 • \(f(a) \) Does NOT map to \(b \)

 ■ Predecessor function, \(f_{pred}(x) = x - 1 \), on \(Z \)
 • \(f(1) = 0 \)
 • \(f(-17) = -18 \)

Functions in CS

• What are ceiling and floor useful for?
 – Data stored on disk are represented as a string of bytes. Each byte = 8 bits. How many bytes are required to encode 100 bits of data?

 Need smallest integer that is at least as large as 100/8

 \[100/8 = 12.5 \]
 But we don’t work with \(\frac{1}{2} \) a byte.
 So we need 13 bytes

What is NOT a function?

• Consider \(f_{\text{SQRT}}(x) \) from \(Z \) to \(R \).
 • This does not meet the given definition of a function, because \(f_{\text{SQRT}}(16) = \pm 4 \).
 • In other words, \(f_{\text{SQRT}}(x) \) assigns exactly one element of \(Z \) to two elements of \(R \).

 No Way!
 Say it ain’t so!!

Note that the convention is that \(\sqrt{x} \) is always the positive value. \(f_{\text{SQRT}}(x) = \pm \sqrt{x} \)
1 to 1 Functions

- A function f is said to be one-to-one or injective if and only if $f(a) = f(b)$ implies that $a = b$ for all a and b in the domain of f.
- Example: the square function from \mathbb{Z}^+ to \mathbb{Z}^+

1
2
3
4
...
9
...
16

1 to 1 Functions, cont.

- Is square from \mathbb{Z} to \mathbb{Z} an example?
 - NO!
 - Because $f_{sq}(-2) = 4 = f_{sq}(+2)$!
- Is floor an example?
 \[\text{INCONCEIVABLE!!} \]
- Is identity an example?
 \[\text{Unique at last!!} \]

How dare they have the same codomain!

Increasing Functions

- A function f whose domain and co-domain are subsets of the set of real numbers is called increasing if $f(x) \leq f(y)$ and strictly increasing if $f(x) < f(y)$, whenever
 - $x < y$ and
 - x and y are in the domain of f.
- Is floor an example?
 \[1.5 < 1.7 \text{ and } \text{floor}(1.5) = 1 = \text{floor}(1.7) \]
 \[1.2 < 2.2 \text{ and } \text{floor}(1.2) = 1 < 2 = \text{floor}(2.2) \]
- Is square an example?

When mapping \mathbb{Z} to \mathbb{Z} or \mathbb{R} to \mathbb{R}:

$\text{square}(-2) = 4 > 1 = \text{square}(1)$ yet $-2 < 1$

How is Increasing Useful?

- Most programs run longer with larger or more complex inputs.
 - Consider the maze:
 - Larger maze may (in the worst case) take longer to get out.
 - Maze with more walls may (in the worst case) take longer to get out.
- Consider looking up a telephone number in the paper directory…

Square is NOT an increasing function UNLESS…

Domain is restricted to positive \mathbb{R}.
Cartesian Products and Functions

- A function with multiple arguments maps a Cartesian product of inputs to a codomain.
- Example:
 - `Math.min` maps \((\mathbb{Z} \times \mathbb{Z})\) to \(\mathbb{Z}\)

    ```java
    int minVal = Math.min(23, 99);
    ```
 - `Math.abs` maps \((\mathbb{Q} \times \mathbb{Q}^+\) to \(\mathbb{Q}^+\)

    ```java
    int absVal = Math.abs(-23);
    ```

Quiz Check

- Are the following functions increasing?
 - \(Z \rightarrow Z\) \(f(x) = x + 5\)
 - \(Z \rightarrow Z\) \(f(x) = 3x - 1\)