Propositional Logic, Truth Tables
(Rosen, Sections 1.1, 1.2, 1.3)

TOPICS

- Propositional Logic
- Logical Operations
- Equivalences

What is logic?

Logic is a **truth-preserving system of inference**.

Truth-preserving: If the initial statements are true, the inferred statements will be true.

Inference: the process of deriving (inferring) new statements from old statements.

Why logic? To reason about programs, e.g. Are the two snippets “the same”?

```java
float x1=0, x2=0, y1=0, y2=0;
// Some code that assigns values to these
// variables (don't count on them all being
// zero by the time the next line is executed
if ((x1 > x2) || !((y1 > y2) || (x1 >= y2)))
    System.out.println("Call the paintBlue method");
else
    System.out.println("Call the paintRed method");

float x1=0, x2=0, y1=0, y2=0;
// Another conditional, same as above?
if (((x1 > x2) && (y1 <= y2)) &&
    ((x1 > x2) && (x1 < y2)))
    System.out.println("Call the paintBlue method");
else
    System.out.println("Call the paintRed method");
```
What are the options to answer
Are the two snippets “the same”?

Options:
A: They are both the same (we’re not guessing and can come by after class and show you)
B: They are both different (we’re not guessing and can come by after class and show you)
C: We have no clue but want to figure this out
D: We will write the program, run it for many values and report back to you
E: This is not an interesting problem

Let’s build towards the math

- We want to reason about Boolean expressions
- They are built out of numbers (and also strings) and variables and operators
- Operators as functions:
 - The comparison operator \(> \) maps two numbers to a Boolean value:

 \[
 > : \mathbb{R} \times \mathbb{R} \to \mathbb{B}
 \]
 - So do all comparison/relation operators
 - Boolean operators (\(||\), \(&&\))? They map two Booleans to a Boolean value:

 \[
 && : \mathbb{B} \times \mathbb{B} \to \mathbb{B}
 \]

Towards the math: let’s simplify

- If we reason over all possible numeric values life will be hard (and it will take a long time).
- For now, focus only on Boolean expressions:
 - variables
 - values
 - expressions built using Boolean operators
- How?
 - Let’s modify the program

Only Boolean variables/operators inside the condition

```java
float x1=0, x2=0, y1=0, y2=0;
boolean b1,b2,b3,b4,b5;
// Replace
// if ((x1 > x2) || ! ((y1 > y2) || (x1 >= y2)))
// by
b1 = (x1 > x2); b2 = (y1 > y2); b3 = (x1 >= y2);
if (b1 || ! (b2 || b3))
// and in the other one
// replace
// if (((x1 > x2) || (y1 <= y2)) &&
// ((x1 > x2) || (x1 < y2)))
// by
b4 = (y1 <= y2); b5 = (x1 < y2);
if ((b1 || b4) && (b1 || b5))
```
Welcome to Propositional Logic

- Also known as:
 - Propositional calculus
 - Boolean algebra
- Propositional logic allows us to prove or disprove equalities that appear in programs:
 - For example, is \((b1 || !(b2 || b3))\) the same thing as \((b1 || !b2) || (b1 || !b3))\)?
 - Yes, they are (always) equivalent by De Morgan's Law and Distributive Law.

Propositional Logic

- A *proposition* is a statement that is either true or false
- Examples:
 - This class is CS160 (true)
 - Today is Sunday (false)
 - It is currently raining in Singapore (???)
- The value may be unknown (i.e., a *variable*)
- Similar to numerical expressions, propositional logic also defines *operators*.

Propositional Logic (II)

- A propositional statement is one of:
 - A simple proposition
 - denoted by a capital letter, e.g. ‘A’.
 - A *negation* of a propositional statement
 - e.g. \(\neg A\) : “not A”
 - Two propositional statements joined by an *operator*
 - e.g. \(A \land B\) : “A and B”
 - e.g. \(A \lor B\) : “A or B”
 - Use *parentheses* as needed (precedence is a convention)
 - e.g. \(A \land (B \lor C)\)

Truth Tables

- The truth value of a compound propositional statement is determined by its truth table
- Truth tables define the truth value of a connective for every possible truth value of its terms
Logical negation

- Negation of proposition A is ¬A
 - A: It is snowing.
 - ¬A: It is not snowing
 - A: Newton knew Einstein.
 - ¬A: Newton did not know Einstein.
 - A: I am not registered for CS195.
 - ¬A: I am registered for CS195.

Negation Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical and (conjunction)

- Conjunction of A and B is A ∧ B
 - A: CS160 teaches logic.
 - B: CS160 teaches Java.
 - A ∧ B: CS160 teaches logic and Java.

- Combining conjunction and negation
 - A: I like fish.
 - B: I like sushi.
 - I like fish but not sushi: A ∧ ¬B

Truth Table for Conjunction

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A∧B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical or (disjunction)

- Disjunction of A and B is \(A \lor B \)
 - A: Today is Friday.
 - B: It is snowing.
 - \(A \lor B \): Today is Friday or it is snowing.

- This statement is true if any of the following hold:
 - Today is Friday
 - It is snowing
 - Both
 - Otherwise it is false

Truth Table for Disjunction

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \lor B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive Or

- The “or” connective \(\lor \) is inclusive: it is true if either or both arguments are true
- There is also an exclusive or \(\oplus \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \oplus B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Confusion over Inclusive OR and Exclusive OR

- Restaurants typically let you pick one (either soup or salad, not both) when they say “The entrée comes with a soup or salad”.
 - Use exclusive OR to write as a logic proposition
- Give two interpretations of the sentence using inclusive OR and exclusive OR:
 - Students who have taken calculus or intro to programming can take this class
Conditional & Biconditional Implication

- The conditional implication connective is \(\rightarrow \)
- The biconditional implication connective is \(\leftrightarrow \)
- These, too, are defined by truth tables

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Conditional implication

- A: A programming homework is due.
- B: It is Tuesday.
- \(A \rightarrow B: \)
 - If a programming homework is due, then it must be Tuesday.
 - A programming homework is due only if it is Tuesday.
 - Is this the same?
 - If it is Tuesday, then a programming homework is due.

Bi-conditional

- A: You can drive a car.
- B: You have a driver’s license.
- \(A \leftrightarrow B \)
 - You can drive a car if and only if you have a driver’s license (and vice versa).
- What if we said “if”?
- What if we said “only if”?

Compound Truth Tables

- Truth tables can also be used to determine the truth values of compound statements, such as \((A \lor B) \land (\neg A)\) (fill this as an exercise)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Tautology and Contradiction

- A **tautology** is a compound proposition that is always true.
- A **contradiction** is a compound proposition that is always false.
- A **contingency** is neither a tautology nor a contradiction.
- A compound proposition is **satisfiable** if there is at least one assignment of truth values to the variables that makes the statement true.

Examples

<table>
<thead>
<tr>
<th></th>
<th>¬A</th>
<th>A ∧ ¬A</th>
<th>A ∧ A</th>
<th>A ¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical Equivalence

- Two compound propositions, p and q, are logically equivalent if p → q is a tautology.
- Notation: p ≡ q
- De Morgan’s Laws:
 - ¬ (p ∧ q) ≡ ¬ p ∨ ¬ q
 - ¬ (p ∨ q) ≡ ¬ p ∧ ¬ q
- How so? Let’s build a truth table!

Proof ¬(p ∧ q) ≡ ¬ p ∨ ¬ q

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>¬p</th>
<th>¬q</th>
<th>(p ∧ q)</th>
<th>¬(p ∧ q)</th>
<th>¬p ∨ ¬q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Show \(\neg(p \lor q) \equiv \neg p \land \neg q \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(\neg q)</th>
<th>((p \lor q))</th>
<th>(\neg(p \lor q))</th>
<th>(\neg p \land \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Equivalences

- Show \(p \rightarrow q \equiv \neg p \lor q \)
- Show Distributive Law:
 - \(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \)

Show \(p \rightarrow q \equiv \neg p \lor q \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(p \rightarrow q)</th>
<th>(\neg p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Show \(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(q \land r)</th>
<th>(p \lor q)</th>
<th>(p \lor r)</th>
<th>((p \lor q) \land (p \lor r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
More Equivalences

<table>
<thead>
<tr>
<th>Equivalence</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \land T \equiv p)</td>
<td>Identity</td>
</tr>
<tr>
<td>(p \lor F \equiv p)</td>
<td></td>
</tr>
<tr>
<td>(p \land q \equiv q \land p)</td>
<td>Commutative</td>
</tr>
<tr>
<td>(p \lor q \equiv q \lor p)</td>
<td></td>
</tr>
<tr>
<td>(p \lor (p \land q) \equiv p)</td>
<td>Absorption</td>
</tr>
<tr>
<td>(p \land (p \lor q) \equiv p)</td>
<td></td>
</tr>
</tbody>
</table>

See Rosen for more.

Equivalences with Conditionals and Biconditionals

- **Conditionals**
 - \(p \to q \equiv \neg p \lor q \)
 - \(p \to q \equiv \neg q \to \neg p \)
 - \(\neg(p \to q) \equiv p \land \neg q \)

- **Biconditionals**
 - \(p \leftrightarrow q \equiv (p \to q) \land (q \to p) \)
 - \(p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \)
 - \(\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q \)

Prove Biconditional Equivalence

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg q)</th>
<th>(p \leftrightarrow q)</th>
<th>(\neg(p \leftrightarrow q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Converse, Contrapositive, Inverse

- The **converse** of an implication \(p \to q \) reverses the propositions: \(q \to p \)
- The **inverse** of an implication \(p \to q \) inverts both propositions: \(\neg p \to \neg q \)
- The **contrapositive** of an implication \(p \to q \) reverses and inverts: \(\neg q \to \neg p \)

The converse and inverse are not logically equivalent to the original implication, but the contrapositive is, and may be easier to prove.