Program Verification
(Rosen, Sections 5.5)

TOPICS
• Program Correctness
• Preconditions & Postconditions
• Program Verification
 • Assignment Statements
 • Conditional Statements
 • Loops
 • Composition Rule

Proofs about Programs

• Why make you study logic?
• Why make you do proofs?
• Because we want to prove properties of
 programs:
 – In particular, we want to prove properties of
 variables at specific points in a program.
 – For example, we may want prove that a program
 segment or method gets the right answer.

Isn’t testing enough?

• Assuming the program compiles, we can go
 ahead and perform some amount of testing.
• Testing shows that for specific examples (test
 cases) the program is doing what was intended.
• Testing can only show existence of some bugs
 but cannot exhaustively identify all of them.
• Program verification can be used to prove the
 correctness of the program with any input.

Software Testing

• Methods
 – Black-box, white-box
• Levels
 – Unit (Method), Module (Class), Integration, System
• Types
 – Functionality, Configuration, Usability, Reliability,
 Performance, Compatibility, Error, Localization, …
• Processes
 – Regression, Automation, Test-Driven Development, Code
 Coverage, …
Program Verification

- We consider a program to be correct if it produces the expected output for all possible inputs.
- Domain of input values can be very large, how many possible values of an integer? 2^{32}
  ```
  int divide (int operand1, int operand2) {
    return operand1 / operand2;
  }
  ```
- $2^{32} \times 2^{32} = 2^{64}$, a large number, so we clearly cannot test exhaustively!
- Instead we formally specify program behavior, then use logic techniques to infer (prove) program correctness.

Predicate Logic and Programs

- Variables in programs are like variables in predicate logic:
 - They have a domain of discourse (data type)
 - They have values (drawn from the data type)
- Variables in programs are different from variables in predicate logic:
 - Their values change over time (i.e., locations in the program)
 - Associate the predicate with specific program points
 - Immediately before or after a statement

Program Correctness Proofs

- Part 1 - Prove program produces correct answer when (if) it terminates.
- Part 2 - Prove that the program does indeed terminate at some point.
- We can only Part 1, because Part 2 has been proven to be undecidable:
 - Thus we try to prove that a method is correct, assuming that it terminates (partial correctness).

Assertions

- Two parts:
 - **Initial Assertion**: a statement of what must be true about the input values or values of variables at the beginning of the program segment
 - For Example: Method that determines the square root of a number, requires the input (parameters) to be ≥ 0
 - **Final Assertion**: a statement of what must be true about the output values or values of variables at the end of the program segment
 - For Example: Can we specify that the output or result is exactly correct after a call to the method?
Pre and Post Conditions

- **Initial Assertion**: sometimes called the pre-condition
- **Final Assertion**: sometimes called the post-condition
- **Note**: these assertions can be represented as propositions or predicates. For simplicity, we will write them generally as propositions.

Pre-condition before code executes

\[x = 1 \]

Post-condition after code executes

\[z = 3 \]

Hoare Triple

- “A program, or program segment, \(S \), is said to be partially correct with respect to the initial assertion (pre-condition) \(p \) and the final assertion (post-condition) \(q \), if, whenever \(p \) is true for the input values of \(S \), and if \(S \) terminates, then \(q \) is true for the output values of \(S \).”
 - [Rosen 7th edition, p. 372]
- **Notation**: \(p \{S\} q \)

Program Verification

Example #1: Assignment Statements

- Assume that our proof system already includes rules of arithmetic, and theorems about divisibility …
- Consider the following code:

\[
\begin{align*}
y &= 2; \\
z &= x + y;
\end{align*}
\]

- **Pre-condition**: \(p(x), x = 1 \)
- **Post-condition**: \(q(z), z = 3 \)

• Prove that the program segment:

\[
\begin{align*}
y &= 2; \\
z &= x + y;
\end{align*}
\]

• Is correct with respect to:
 - pre-condition: \(x = 1 \)
 - post-condition: \(z = 3 \)
• Suppose \(x = 1 \) is true as program begins:
 - Then \(y \) is assigned the value of 2
 - Then \(z \) is assigned the value of \(x + y = 1 + 2 = 3 \)
• Thus, the program segment is correct with regards to the pre-condition that \(x = 1 \) and post-condition \(z = 3 \).
Program Verification
Example #2: Assignment Statements

• Prove that the program segment:
 \[y = 2; \]
 \[z = x \cdot y; \]
• Is correct with respect to:
 pre-condition: \(x \geq 1 \)
 post-condition: \(z \geq 2 \)
• Suppose \(y \geq 1 \) is true as program begins:
 – Then \(x \) is assigned the value of 2
 – Then \(z \) is assigned the value of \(x \cdot y = 2 \cdot (y \geq 1) \), which makes \(z \geq 2 \)
• Thus, the program segment is correct for pre-condition \(y \geq 1 \) and post-condition \(z \geq 2 \).

Program Verification
Example #3: Assignment Statements

• Prove that the program segment, given integer variables:
 \[y = x \cdot x + 2 \cdot x - 5; \]
• Is correct with respect to: pre-condition: \(-4 \leq x \leq 1\), and
 post-condition: \(-6 \leq y \leq 3\)
• Suppose -4 \leq x \leq 3 as the program begins
 – If \(x \) = -4 then \(y \) is assigned \((-4) \cdot (-4) + 2 \cdot (-4) - 5 = 3\)
 – If \(x \) = -3 then \(y \) is assigned \((-3) \cdot (-3) + 2 \cdot (-3) - 5 = -2\)
 – If \(x \) = -2 then \(y \) is assigned \((-2) \cdot (-2) + 2 \cdot (-2) - 5 = -5\)
 – If \(x \) = -1 then \(y \) is assigned \((-1) \cdot (-1) + 2 \cdot (-1) - 5 = -6\)
 – If \(x \) = 0 then \(y \) is assigned \((0) \cdot (0) + 2 \cdot (0) - 5 = -5\)
 – If \(x \) = 1 then \(y \) is assigned \((1) \cdot (1) + 2 \cdot (1) - 5 = -2\)
• Thus, program segment is correct post-condition \(-6 \leq y \leq 3\), or more precisely \(y \) belongs to the set \{-6, -5, -2, 3\}.

Program Verification
Example #4: Assignment Statements

• Given the following segment, \(x \) and \(y \) are integer variables:

  ```
  // pre-condition: -3 < x <= 3
  y = x * x - 3 * x + 4;
  // post-condition: ?? <= y <= ??
  ```

• Suppose -3 < \(x \) and \(x \leq 3 \) as the program begins
 – If \(x \) = -2 then \(y \) is assigned \((-2) \cdot (-2) - 3 \cdot (-2) + 4 = 14\)
 – If \(x \) = -1 then \(y \) is assigned \((-1) \cdot (-1) - 3 \cdot (-1) + 4 = 8\)
 – If \(x \) = 0 then \(y \) is assigned \((0) \cdot (0) - 3 \cdot (0) + 4 = 4\)
 – If \(x \) = 1 then \(y \) is assigned \((1) \cdot (1) - 3 \cdot (1) + 4 = 2\)
 – If \(x \) = 2 then \(y \) is assigned \((2) \cdot (2) - 3 \cdot (2) + 4 = 2\)
 – If \(x \) = 3 then \(y \) is assigned \((3) \cdot (3) - 3 \cdot (3) + 4 = 4\)
• Thus, the post-condition for \(y \) is \(2 \leq y \leq 14 \).

So far only propositions, what about predicates?

• What if the data type was float or double, or the interval was unbounded?
• Now we need to use predicates – universally quantified over a range of values.
• Actually this is what we did, but simply enumerated all the values in the range since they were integers.
• Revisit Example #3: with floating point values:
 – Need to use more math
 – Is the function increasing?
 – In what intervals?

```
float x, y;
// code to initialize x
y = x * x - 2 * x - 5;
```
Redo with floating point
Example #3: Assignment Statements

- Given that the polynomial below is an increasing function in the interval [-1, 4], prove conditions of the program segment:

\[f(x) = x^2 + 2x - 5 \]

- Pre-condition: -1 <= x <= 4
- Post-condition: ?? <= y <= ??

- Without executing the assignment we know domain of x, so we can prove (using math) the range of y values.
- Q: What is the range of values of \(f(x) = x^2 + 2x - 5 \) that satisfy \(f(-1) \leq f(x) \leq f(4) \) for values of x in the interval [-1, 4]?
- A: We can prove that, -2 <= y <= 3 because f(-1)=-2 and f(4)=3

General Rule for Assignments

- To prove the Hoare triple:

\[p \{ \text{v = expression} \} q \]

- note that \(p \) and \(q \) are predicates involving program variables (usually \(q \) involves \(v \))
- We first replace occurrences of \(v \) in \(q \) by the right hand side expression (expression)
- Then we derive this modified \(q \) from \(p \) using our rules of inference
- Sometimes we use common sense, e.g., derive first substitute later, as in previous.

Rule 1: Composition Rule

- Once we prove correctness of program segments, we can combine the proofs together to prove correctness of an entire program.

\[p \{S1\} q \{S2\} r \rightarrow p \{S1,S2\} r \]

- This is similar to the hypothetical syllogism inference rule.

Program Verification
Example #1: Composition Rule

- Prove that the program segment (swap):

\[
\begin{align*}
t &= x; \\
x &= y; \\
y &= t;
\end{align*}
\]

- Is correct with respect to

pre-condition: x = 7, y = 5
post-condition: x = 5, y = 7
Program Verification

Example #1 (cont.): Composition Rule

- Program segment: \(t = x; x = y; y = t; \)
- Suppose \(x = 7 \) and \(y = 5 \) is true as program begins:
 - // Pre-condition: \(x = 7, y = 5 \)
 \(t = x; \)
 - // Post-condition: \(t = 7, x = 7, y = 5 \)
- // Pre-condition: \(t = 7, x = 7, y = 5 \)
 \(x = y; \)
 - // Post-condition: \(t = 7, x = 5, y = 5 \)
 // Pre-condition: \(t = 7, x = 5, y = 5 \)
 \(y = t; \)
 - // Post-condition: \(t = 7, x = 5, y = 7 \)
- The program segment is correct with regards to the pre-condition \(x = 7 \) and \(y = 5 \) and post-condition \(x = 5 \) and \(y = 7 \).

Rule 2: Conditional Statements

- Given
 \[
 \text{if (c)} \ \ \statement; \]
 With pre-condition: \(p \) and post-condition: \(q \)
- Must show that
 - Case 1: \(p && c \rightarrow q \): when \(p \) is true and \(c \), the condition is true then \(q \) (post-condition) can be derived, when \(S \) (statement) terminates, AND ALSO THAT
 - Case 2: \(p && \neg c \rightarrow q \): when \(p \) is true and \(\neg c \) (condition) is false, then \(q \) is true (\(S \) does not execute, so we must show that \(q \) follows directly from \(p \) and \(\neg c \))

Conditional Rule: Example #1

- Verify that the program segment:
 \[
 \text{if (x > y) y = x;}
 \]
- Is correct with respect to pre-condition \(T \) (program state is correct when entering segment) and the post-condition that \(y \geq x \).
- Consider the two cases...
 1. Condition \((x > y) \) is true, then \(y = x \)
 2. Condition \((x > y) \) is false, then that means \(y \geq x \)
- Thus, if pre-condition is true, then \(y = x \) or \(y \geq x \) which means that the post-condition that \(y \geq x \) is true.

Conditional Rule: Example #2

- Verify that the program segment
 \[
 \text{if (x % 2 == 1) x = x + 1;}
 \]
- Is correct with respect to pre-condition \(T \) and the post-condition that \(x \) is even.
- Consider the two cases...
 1. Condition \((x \ % \ 2 \ equals \ 1) \) is true, then \(x \) is odd. If \(x \) is odd, then adding 1 makes \(x \) even.
 2. Condition \((x \ % \ 2 \ equals \ 1) \) is false, then \(x \) is already even, and remains even.
- Thus, if pre-condition is true, then either \(x \) is even or \(x \) is even, so the post-condition that \(x \) is even is true.
Rule 2a: Conditional with Else

\[
\text{if (condition)} \\
\begin{align*}
S1; & \\
\text{else} & \\
S2; & \\
\end{align*}
\]

- Must show that
 - Case 1: when \textit{p (precondition)} is true and \textit{condition} is true then \textit{q (postcondition)} is true, when \textit{S1 (statement)} terminates
 OR
 - Case 2: when \textit{p} is true and \textit{condition} is false, then \textit{q} is true, when \textit{S2 (statement)} terminates

Conditional Rule: Example #3

- Verify that the program segment:
 \[
 \begin{align*}
 \text{if (x < 0)} & \quad \text{abs} = -x; \\
 \text{else} & \quad \text{abs} = x;
 \end{align*}
 \]
 - Is correct with respect to pre-condition T and post-condition that abs is the absolute value of x.
 - Consider the two cases…
 1. Condition \((x < 0)\) is true, \(x\) is negative. Assigning abs the negative of a negative means abs is the absolute value of x.
 2. Condition \((x < 0)\) is false, \(x\) is positive. Assigning abs a positive number means abs is the absolute value of x.
 - Thus, if pre-condition is true, then the post-condition that abs is the absolute value of x is true.

Conditional Rule: Example #4

- Verify that the program segment:
 \[
 \begin{align*}
 \text{if (balance > 100)} & \quad \text{nbalance} = \text{balance} * 1.02 \\
 \text{else} & \quad \text{nbalance} = \text{balance} * 1.005;
 \end{align*}
 \]
 - Is correct with respect to pre-condition balance \(\geq 0\) and post-condition:
 \((\text{balance > 100} \; \&\& \; (\text{nbalance} = \text{balance} * 1.02)) \; |\; | \; (\text{balance \leq 100} \; \&\& \; (\text{nbalance} = \text{balance} * 1.005))\)
 - Consider the two cases…
 1. Condition \((\text{balance > 100})\) is true, assign \text{nbalance} to \text{balance}*1.02
 2. Condition \((\text{balance > 100})\) is false, assign \text{nbalance} to \text{balance}*1.005
 - Thus, if precondition of balance \(\geq 0\) is true, \((\text{balance > 100} \; \&\& \; (\text{nbalance} = \text{balance} * 1.02))\) or \((\text{balance \leq 100} \; \&\& \; (\text{nbalance} = \text{balance} * 1.005))\). Thus the post-condition is proven.

How to we prove loops correct?

- General idea: \textit{loop invariant}
- Find a property that is true before the loop
- Show that it must still be true after every iteration of the loop
- Therefore it is true after the loop
Rule 3: Loop Invariant

while (condition)
 S;
• Rule:
 \[(p \land \text{condition})(S)p\]
 \{while condition S\}(\neg\text{condition} \land p)\]

Note both conclusions
Note these are both p!

Example #1: Simple Assignments
- Before loop: \(z = v_1\)
- During loop: \(z = v_1 + y \times (x - 1)\)
 - Iteration 1: \(x = 2, z = v_1 + 3\)
 - Iteration 2: \(x = 3, z = v_1 + 6\)
 - Iteration 3: \(x = 4, z = v_1 + 9\)
- After loop: \(z = v_1 + 9\)
• Thus, loop invariant is: \(y = 3; z = v_1 + y \times (x - 1)\)

```
int x = 2, y = 3, z = v1;
while (x <= 4) {
    z *= y;
    x++;
}
```

Example #2: More Assignments
- Before loop: \(x = 1, y = 2, z = -5\)
- During loop: \(1 \leq x \leq 6; y = 2; z = -5 + 2 \times x\)
 - Iteration 1: \(x = 2, z = v1 + 3\)
 - Iteration 2: \(x = 3, z = v1 + 6\)
 - Iteration 3: \(x = 4, z = v1 + 9\)
- After loop: \(x = 6, y = 2, z = 5\)
• Thus, loop invariant is: \(1 \leq x \leq 6; y = 2; -5 \leq z \leq 5\)

```
int x = 1, y = 2, z = -5;
while (x <= 5) {
    z += y;
    x++;
}
```

Example #3: Factorial Computation
- Before loop: \(i = 1\) and because \(n \geq 1\), then \(i \leq n\), \(factorial = 1 = 1! = i!\)
- During loop: \(i < n\), and \(factorial = i!\)
 - Iteration 1: \(i = 2, factorial = 2\)
 - Iteration 2: \(i = 3, factorial = 6\)
 - Iteration 3: \(i = 4, factorial = 24\)
- After loop: \(i = n\) and because \(i = n\), \(factorial = n!\)
• Thus, loop invariant is: \(i \leq n; factorial = i!\)

So we have proven that the program segment terminates with \(factorial = n!\), i.e. it correctly computes the factorial.

```
i = 1;
factorial = 1;
while (i < n) {
    i++;
    factorial *= i;
}
```

```