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Assertions, pre/post-
conditions and invariants  
 

Assertions: Section 4.2 in Savitch (p. 239) 
Loop invariants: Section 4.5 in Rosen 

Programming as a contract 
n  Specifying what each method does  

q  Specify it in a comment before method's header 
n  Precondition 

q  What is assumed to be true before the method is 
executed 

q  Caller obligation 
n  Postcondition 

q  Specifies what will happen if the preconditions are 
met – what the method guarantees to the caller 

q  Method obligation 

Example 

/*   
 ** precondition:  x >= 0 

 ** postcondition: return value satisfies: 
 ** result * result == x 

*/ 

double sqrt(double x) { 
 

} 

Enforcing preconditions 

/*   
 ** precondition:  x >= 0 

 ** postcondition: return value satisfies: 
 ** result * result == x 

*/ 

double sqrt(double x) { 
  if (x < 0) 

     throw new ArithmeticExpression (“you 
       tried to take sqrt of a neg number!”); 

 
} 

Class Invariants 

n  A class invariant is a condition that all 
objects of that class must satisfy while it can 
be observed by clients 

n  What about a Rectangle object? 

What is an assertion? 

n  An assertion is a statement that says something about 
the state of your program 

n  Should be true if there are no mistakes in the program 

//n == 1 
while (n < limit) { 

n = 2 * n; 
} 
// what could you state here? 
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What is an assertion? 

n  An assertion is a statement that says something about 
the state of your program 

n  Should be true if there are no mistakes in the program 

//n == 1 
while (n < limit) { 

n = 2 * n; 
} 
//n >= limit 

 

assert 

 Using assert: 
 
 assert n == 1; 
while (n < limit) { 

 n = 2 * n; 
} 
assert n >= limit; 
 

 

When to use Assertions 

n  Another example 
 
if (i % 3 == 0) { ... }  

else if (i % 3 == 1) { ... }  
else { // We know (i % 3 == 2)  
... }  

 

When to use Assertions 

n  We can use assertions to guarantee the 
behavior. 

 
if (i % 3 == 0) { ... }  

else if (i % 3 == 1) { ... }  
else { assert i % 3 == 2; ... }  

Another example 

 
int p=…,d=…; 
int q = p/d; 
int r = p%d; 
assert ? 

Another example 

 
int p=…,d=…; 
int q = p/d; 
int r = p%d; 
assert p == q*d + r; 
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Control Flow 

n  If a program should never reach a point,  
then a constant false assertion may be used 
 private void search() {  
  for (...) {  
         ... 
      if (found) // will always happen  
         return;  

 }  
  assert false; // should never get here  
 }  

Assertions 

n  Syntax:   
 assert Boolean_Expression; 

n  Each assertion is a Boolean expression that you claim is  
true.  

n  By verifying that the Boolean expression is indeed true, 
the assertion confirms your claims about the behavior of 
your program, increasing your confidence that the 
program is free of errors. 

n  If assertion is false when checked, the program raises an 
exception. 

 

When to use assertions? 

n  Programming by contract 
n  Preconditions in methods (eg value ranges 

of parameters) should be enforced rather 
than asserted because assertions can be 
turned off 

n  Postconditions 
q  Assert post-condition 

Performance 

n  Assertions may slow down execution. For example, if an 
assertion checks to see if the element to be returned is 
the smallest element in the list, then the assertion would 
have to do the same amount of work that the method 
would have to do 

n  Therefore assertions can be enabled and disabled 
n  Assertions are, by default, disabled at run-time 
n  In this case, the assertion has the same semantics as an 

empty statement 
n  Think of assertions as a debugging tool 
n  Don’t use assertions to flag user errors, because 

assertions can be turned off 

 

Assertions in Eclipse 

n  To enable assert statements, you must set a 
compiler flag. Go to Run -> Run Configurations -
> Arguments, and in the box labeled VM 
arguments, enter either -enableassertions or just 
-ea 

More Information 

n  For more information: 
 
http://java.sun.com/j2se/1.4.2/docs/guide/
lang/assert.html 
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Loop invariants 

n  We can use predicates (logical expressions) 
to reason about our programs. 

n  A loop invariant is a predicate 
q  that is true directly before the loop executes 
q  that is true before and after the loop body 

executes 
q  and that is true directly after the loop has 

executed 
i.e., it is kept invariant by the loop.  
 

Loop invariants 

n  Combined with the loop condition, the loop 
invariant allows us to reason about the behavior 
of the loop: 

      <loop invariant> 
      while(test){ 
          <test AND loop invariant> 
           S; 
          <loop invariant> 
      } 
      < not test AND loop invariant> 

What does it mean... 

 <loop invariant> 
  while(test){ 
     <test AND 

loop invariant> 
         S; 
      <loop 

invariant> 
  } 
 < not test AND  
   loop invariant> 

If we can prove that  
   the loop invariant holds before the loop 
and that 
    the loop body keeps the loop invariant true 
    i.e. <test AND loop invariant> S; <loop invariant> 
 
then we can infer that 
 
  not test AND  loop invariant  
  holds after the loop terminates 
  

Example: loop index value after loop  
   <precondition: n>0> 
   int i = 0; 
    while (i < n){  
       i = i+1; 
   } 
   <post condition: i==n >   
 
 

We want to prove: 
i==n right after the loop  

Example: loop index value after loop  
   // precondition: n>0 
   int i = 0; 
   // i<=n    loop invariant 
    while (i < n){ 
       // i < n  test passed   
       //   AND  
       //   i<=n  loop invariant 
          i++; 
       // i <= n  loop invariant 
   } 
  // i>=n  AND i <= n  à i==n    
 
 

So we can conclude the 
obvious: 
 
 i==n right after the loop  

Example: sum of elements in an array 
int total (int[] elements){!
   int sum = 0, i = 0, n = elements.length;!
   // sum == sum of elements from 0 to i-1 !
   while (i < n){!
       // sum == sum of elements 0...i-1!
       sum += elements [i];!
       i++;!
       // sum == sum of elements 0...i-1!
   }!
   // i==n (previous example) AND !
   // sum == sum elements 0...i-1  !
   // à  sum == sum of elements 0...n-1!
   return sum;!
}!
!
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Closed Curve Game 
n  There are two players, Red and Blue. The game is 

played on a rectangular grid of points: 
                  6   . . . . . . .!
                  5   . . . . . . .!
                  4   . . . . . . .!
                  3   . . . . . . .!
                  2   . . . . . . .!
                  1   . . . . . . .!
                      1 2 3 4 5 6 7!

Red draws a red line segment, either horizontal or vertical, connecting 
any two adjacent points on the grid that are not yet connected by a line 
segment. Blue takes a turn by doing the same thing, except that the 
line segment drawn is blue. Red's goal is to form a closed curve of red 
line segments. Blue's goal is to prevent Red from doing so. 
!
See http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html 

Closed Curve Game 

n  We can express this game as a computer 
program: 

   while (more line segments can be drawn) { !
       Red draws line segment;!
       Blue draws line segment;!
  }!
!
Question: Does either Red or Blue have a winning 
strategy?!

Closed Curve Game 
n  Answer: Yes! Blue is guaranteed to win the game by responding to 

each turn by Red in the following manner: 
   if (Red drew a horizontal line segment) {!
      let i and j be such that Red's line segment connects (i,j) with (i,j+1) !
      if (i>1) {!

         draw a vertical line segment connecting (i-1,j+1) with (i,j+1)!
      } else {!
         draw a line segment anywhere!
      }!
   } else  // Red drew a vertical line segment!
      let i and j be such that Red's line segment connects (i,j) with (i+1,j) !

      if (j>1) {!
         draw a horizontal line segment connecting (i+1,j-1) with (i+1,j)!
      } else  {!
         draw a line segment anywhere!
      }!
   }!

Closed Curve Game 

n  By following this strategy Blue guarantees that Red does 
not have an “upper right corner” at any step. 

n  So, the invariant is: 
There does not exist on the grid a pair of red line 
segments that form an upper right corner. 
 
And in particular, Red has no closed curve! 

Example: Egyptian multiplication 
                               A  B 
    19  5 
  19 x 5:  /2  9  10  *2 
   /2  4  20  *2 
   /2  2  40  *2 
   /2  1  80  *2 
  throw away all rows with even A: 
    A  B 
    19  5 
    9  10 
    1  80 
    __________ 
   add B's   95   

                                        --> the product !! 
 

 Can we show it works? Loop invariants!! 
// pre: left >0 AND right >0 

int a=left, b=right, p=0;  //p:  the product 
// p + (a*b) == left * right  loop invariant 
while (a!=0){ 

   // a!=0 and p + (a*b) == left * right  

   // loop condition and loop invariant 

   if (odd(a))  p+=b; 
  a/=2; 

  b*=2; 

 // p+(a*b) == left*right 

} 

// a==0 and p+a*b == left*right  à  p == left*right 
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Try it on 7 * 8 

 
  left  right  a  b  p 
    7    8  7  8  0 
    3  16  +=b: 8 
    1  32  +=b: 24 
    0  64  +=b: 56 

 

Try it on 8*7 

        left  right  a  b  p 
    8    7  8  7  0 
    4  14  0 
    2  28  0 
    1  56  0 
    0  118  +=b: 56 

 

Relation to int representation 19*5 

      00101 
      10011 
    ______    
          101   5 
        1010  10 
      00000 
    000000 
            1010000  80 
            _______ 
            1011111  95 

Summary: Loop Invariant Reasoning 

 //loop invariant true before loop 
 while (b){ 
    // b  AND loop invariant 
  S; 
    // loop invariant 
 } 

    // not b  AND loop invariant 
  

    not b helps you make a stronger observation than loop 
invariant alone. 


