
2/14/13

1

Assertions, pre/post-
conditions and invariants

Assertions: Section 4.2 in Savitch (p. 239)
Loop invariants: Section 4.5 in Rosen

Programming as a contract
n  Specifying what each method does

q  Specify it in a comment before method's header
n  Precondition

q  What is assumed to be true before the method is
executed

q  Caller obligation
n  Postcondition

q  Specifies what will happen if the preconditions are
met – what the method guarantees to the caller

q  Method obligation

Example

/*
 ** precondition: x >= 0

 ** postcondition: return value satisfies:
 ** result * result == x

*/

double sqrt(double x) {

}

Enforcing preconditions

/*
 ** precondition: x >= 0

 ** postcondition: return value satisfies:
 ** result * result == x

*/

double sqrt(double x) {
 if (x < 0)

 throw new ArithmeticExpression (“you
 tried to take sqrt of a neg number!”);

}

Class Invariants

n  A class invariant is a condition that all
objects of that class must satisfy while it can
be observed by clients

n  What about a Rectangle object?

What is an assertion?

n  An assertion is a statement that says something about
the state of your program

n  Should be true if there are no mistakes in the program

//n == 1
while (n < limit) {

n = 2 * n;
}
// what could you state here?

2/14/13

2

What is an assertion?

n  An assertion is a statement that says something about
the state of your program

n  Should be true if there are no mistakes in the program

//n == 1
while (n < limit) {

n = 2 * n;
}
//n >= limit

assert

 Using assert:

 assert n == 1;
while (n < limit) {

 n = 2 * n;
}
assert n >= limit;

When to use Assertions

n  Another example

if (i % 3 == 0) { ... }

else if (i % 3 == 1) { ... }
else { // We know (i % 3 == 2)
... }

When to use Assertions

n  We can use assertions to guarantee the
behavior.

if (i % 3 == 0) { ... }

else if (i % 3 == 1) { ... }
else { assert i % 3 == 2; ... }

Another example

int p=…,d=…;
int q = p/d;
int r = p%d;
assert ?

Another example

int p=…,d=…;
int q = p/d;
int r = p%d;
assert p == q*d + r;

2/14/13

3

Control Flow

n  If a program should never reach a point,
then a constant false assertion may be used
 private void search() {
 for (...) {
 ...
 if (found) // will always happen
 return;

 }
 assert false; // should never get here
 }

Assertions

n  Syntax:
 assert Boolean_Expression;

n  Each assertion is a Boolean expression that you claim is
true.

n  By verifying that the Boolean expression is indeed true,
the assertion confirms your claims about the behavior of
your program, increasing your confidence that the
program is free of errors.

n  If assertion is false when checked, the program raises an
exception.

When to use assertions?

n  Programming by contract
n  Preconditions in methods (eg value ranges

of parameters) should be enforced rather
than asserted because assertions can be
turned off

n  Postconditions
q  Assert post-condition

Performance

n  Assertions may slow down execution. For example, if an
assertion checks to see if the element to be returned is
the smallest element in the list, then the assertion would
have to do the same amount of work that the method
would have to do

n  Therefore assertions can be enabled and disabled
n  Assertions are, by default, disabled at run-time
n  In this case, the assertion has the same semantics as an

empty statement
n  Think of assertions as a debugging tool
n  Don’t use assertions to flag user errors, because

assertions can be turned off

Assertions in Eclipse

n  To enable assert statements, you must set a
compiler flag. Go to Run -> Run Configurations -
> Arguments, and in the box labeled VM
arguments, enter either -enableassertions or just
-ea

More Information

n  For more information:

http://java.sun.com/j2se/1.4.2/docs/guide/
lang/assert.html

2/14/13

4

Loop invariants

n  We can use predicates (logical expressions)
to reason about our programs.

n  A loop invariant is a predicate
q  that is true directly before the loop executes
q  that is true before and after the loop body

executes
q  and that is true directly after the loop has

executed
i.e., it is kept invariant by the loop.

Loop invariants

n  Combined with the loop condition, the loop
invariant allows us to reason about the behavior
of the loop:

 <loop invariant>
 while(test){
 <test AND loop invariant>
 S;
 <loop invariant>
 }
 < not test AND loop invariant>

What does it mean...

 <loop invariant>
 while(test){
 <test AND

loop invariant>
 S;
 <loop

invariant>
 }
 < not test AND
 loop invariant>

If we can prove that
 the loop invariant holds before the loop
and that
 the loop body keeps the loop invariant true
 i.e. <test AND loop invariant> S; <loop invariant>

then we can infer that

 not test AND loop invariant
 holds after the loop terminates

Example: loop index value after loop
 <precondition: n>0>
 int i = 0;
 while (i < n){
 i = i+1;
 }
 <post condition: i==n >

We want to prove:
i==n right after the loop

Example: loop index value after loop
 // precondition: n>0
 int i = 0;
 // i<=n loop invariant
 while (i < n){
 // i < n test passed
 // AND
 // i<=n loop invariant
 i++;
 // i <= n loop invariant
 }
 // i>=n AND i <= n à i==n

So we can conclude the
obvious:

 i==n right after the loop

Example: sum of elements in an array
int total (int[] elements){!
 int sum = 0, i = 0, n = elements.length;!
 // sum == sum of elements from 0 to i-1 !
 while (i < n){!
 // sum == sum of elements 0...i-1!
 sum += elements [i];!
 i++;!
 // sum == sum of elements 0...i-1!
 }!
 // i==n (previous example) AND !
 // sum == sum elements 0...i-1 !
 // à sum == sum of elements 0...n-1!
 return sum;!
}!
!

2/14/13

5

Closed Curve Game
n  There are two players, Red and Blue. The game is

played on a rectangular grid of points:
 6 !
 5 !
 4 !
 3 !
 2 !
 1 !
 1 2 3 4 5 6 7!

Red draws a red line segment, either horizontal or vertical, connecting
any two adjacent points on the grid that are not yet connected by a line
segment. Blue takes a turn by doing the same thing, except that the
line segment drawn is blue. Red's goal is to form a closed curve of red
line segments. Blue's goal is to prevent Red from doing so.
!
See http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

Closed Curve Game

n  We can express this game as a computer
program:

 while (more line segments can be drawn) { !
 Red draws line segment;!
 Blue draws line segment;!
 }!
!
Question: Does either Red or Blue have a winning
strategy?!

Closed Curve Game
n  Answer: Yes! Blue is guaranteed to win the game by responding to

each turn by Red in the following manner:
 if (Red drew a horizontal line segment) {!
 let i and j be such that Red's line segment connects (i,j) with (i,j+1) !
 if (i>1) {!

 draw a vertical line segment connecting (i-1,j+1) with (i,j+1)!
 } else {!
 draw a line segment anywhere!
 }!
 } else // Red drew a vertical line segment!
 let i and j be such that Red's line segment connects (i,j) with (i+1,j) !

 if (j>1) {!
 draw a horizontal line segment connecting (i+1,j-1) with (i+1,j)!
 } else {!
 draw a line segment anywhere!
 }!
 }!

Closed Curve Game

n  By following this strategy Blue guarantees that Red does
not have an “upper right corner” at any step.

n  So, the invariant is:
There does not exist on the grid a pair of red line
segments that form an upper right corner.

And in particular, Red has no closed curve!

Example: Egyptian multiplication
 A B
 19 5
 19 x 5: /2 9 10 *2
 /2 4 20 *2
 /2 2 40 *2
 /2 1 80 *2
 throw away all rows with even A:
 A B
 19 5
 9 10
 1 80

 add B's 95

 --> the product !!

 Can we show it works? Loop invariants!!
// pre: left >0 AND right >0

int a=left, b=right, p=0; //p: the product
// p + (a*b) == left * right loop invariant
while (a!=0){

 // a!=0 and p + (a*b) == left * right

 // loop condition and loop invariant

 if (odd(a)) p+=b;
 a/=2;

 b*=2;

 // p+(a*b) == left*right

}

// a==0 and p+a*b == left*right à p == left*right

2/14/13

6

Try it on 7 * 8

 left right a b p
 7 8 7 8 0
 3 16 +=b: 8
 1 32 +=b: 24
 0 64 +=b: 56

Try it on 8*7

 left right a b p
 8 7 8 7 0
 4 14 0
 2 28 0
 1 56 0
 0 118 +=b: 56

Relation to int representation 19*5

 00101
 10011

 101 5
 1010 10
 00000
 000000
 1010000 80

 1011111 95

Summary: Loop Invariant Reasoning

 //loop invariant true before loop
 while (b){
 // b AND loop invariant
 S;
 // loop invariant
 }

 // not b AND loop invariant

 not b helps you make a stronger observation than loop
invariant alone.

