
2/14/13	

1	

Recursion

Chapter 5 in Rosen
Chapter 11 in Savitch

What does this method do?

/**
* precondition n>0
* postcondition ??
*/
private void printStars(int n) {
 if (n == 1) {
 System.out.println("*");

 } else {
 System.out.print("*");

 printStars(n - 1);
 }
}

Recursion

n  recursion: The definition of an operation in terms
of itself.
q  Solving a problem using recursion depends on solving

smaller occurrences of the same problem.

n  recursive programming: Writing methods that
call themselves
q  directly or indirectly
q  An equally powerful substitute for iteration (loops)
q  But sometimes much more suitable for the problem

Definition of recursion

 recursion: n. 	
	 	See recursion.	

Recursive Acronyms

http://search.dilbert.com/comic/Ttp

Dilbert: Wally, would you like to be on my TTP project?
Wally: What does "TTP" stand for?
Dilbert: It's short for The TTP Project. I named it myself.
— Dilbert, May 18, 1994

GNU — GNU's Not Unix
KDE — KDE Desktop Environment
PHP - PHP: Hypertext Preprocessor
PNG — PNG's Not GIF (officially "Portable Network Graphics")
RPM — RPM Package Manager (originally "Red Hat Package
Manager")

Why learn recursion?

n  A different way of thinking about problems
n  Can solve some problems better than

iteration
n  Leads to elegant, simple, concise code

(when used well)
n  Some programming languages ("functional"

languages such as Scheme, ML, and
Haskell) use recursion exclusively (no loops)

2/14/13	

2	

Exercise

n  (To a student in the front row)
How many students are directly behind you?
q  We all have poor vision, and can

only see the people right next to us.
So you can't just look back and count.

q  But you are allowed to ask
questions of the person behind you.

q  How can we solve this problem?
(recursively)

The idea

n  Recursion is all about breaking a big problem
into smaller occurrences of that same problem.

q  Each person can solve a small part of the problem.
n  What is a small version of the problem that would be easy to

answer?
n  What information from

 a neighbor might help
 you?

Recursive algorithm

n  Number of people behind me:
q  If there is someone behind me,

ask him/her how many people are behind him/her.
n  When they respond with a value N, then I will answer N + 1.

q  If there is nobody behind me, I will answer 0.

Recursive structures

n  A directory has
q  files
and
q  (sub) directories

n  An expression has
q  operators
q  operands, which are

n  variables
n  constants
n  (sub) expressions

Expressions represented by trees

n  A tree is

q  a node
with
q  zero or more sub

trees
examples:
 a*b + c*d
 (a+b)*(c+d)

+
* *

a b c d

*
+ +

a b c d

Structure of recursion

n  Each of these examples has
q  recursive parts (directory, expression, tree)
q  non recursive parts (file, variables, nodes)

n  Would we always need non recursive parts?

n  Same goes for recursive algorithms.

2/14/13	

3	

Cases

n  Every recursive algorithm has at least 2 cases:

q  base case: A simple instance that can be answered
directly.

q  recursive case: A more complex instance of the
problem that cannot be directly answered, but can
instead be described in terms of smaller instances.

q  Can have more than one base or recursive case, but all
have at least one of each.

q  A crucial part of recursive programming is identifying
these cases.

Base and Recursive Cases: Example

public void printStars(int n) {
 if (n == 1) {
 // base case; print one star
 System.out.println("*");
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

Recursion Zen

n  An even simpler, base case is n=0:

public void printStars(int n) {
 if (n == 0) {
 // base case; end the line of output
 System.out.println();
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

q  Recursion Zen: The art of identifying the best set
of cases for a recursive algorithm and expressing
them elegantly.

Everything recursive can be done non-
recursively

// Prints a line containing a given number of stars.
// Precondition: n >= 0
public void printStars(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("*");
 }
 System.out.println();
}

Exercise

n  Write a method reverseLines that accepts a file
Scanner prints to System.out the lines of the file in
reverse order.

q  Write the method recursively and without using loops.

q  Example input: Expected output:

 this no?

 is fun
 fun is

 no? this

q  What are the cases to consider?

n  How can we solve a small part of the problem at a time?
n  What is a file that is very easy to reverse?

Reversal pseudocode

n  Reversing the lines of a file:
q  Read a line L from the file.
q  Print the rest of the lines in reverse order.
q  Print the line L.

n  If only we had a way to reverse the rest of the lines of the
file....

2/14/13	

4	

Reversal solution
public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 // recursive case
 String line = input.nextLine();
 reverseLines(input);
 System.out.println(line);
 }
}

q  Where is the base case?

input file: output:
this
is
fun
no?

no?
fun
is
this

Tracing our algorithm

n  call stack: The method invocations running
at any one time.

 reverseLines(new
Scanner("poem.txt"));

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”this"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”is"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”fun"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”no?"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) { // false
 ...
 }
}

21

Recursive power example

n  Write a method that computes xn.
 xn = x * x * x * ... * x (n times)

n  An iterative solution:
public int pow(int x, int n) {
 int product = 1;
 for (int i = 0; i < n; i++) {
 product = product * x;
 }
 return product;
}

Exercise solution
// Returns base ^ exponent.
// Precondition: exponent >= 0
public int pow(int x, int n) {
 if (n == 0) {
 // base case; any number to 0th power is 1
 return 1;
 } else {
 // recursive case: x^n = x * x^(n-1)
 return x * pow(x, n-1);
 }
}

23

How recursion works

n  Each call sets up a new instance of all the
parameters and the local variables

n  When the method completes, control returns to
the method that invoked it (which might be
another invocation of the same method)

pow(4, 3) = 4 * pow(4, 2)
 = 4 * 4 * pow(4, 1)
 = 4 * 4 * 4 * pow(4, 0)
 = 4 * 4 * 4 * 1
 = 64

24

Infinite recursion
n  A method with a missing or badly written base

case can causes infinite recursion

public int pow(int x, int y) {
 return x * pow(x, y - 1); // Oops! No base case
}

pow(4, 3) = 4 * pow(4, 2)
 = 4 * 4 * pow(4, 1)
 = 4 * 4 * 4 * pow(4, 0)
 = 4 * 4 * 4 * 4 * pow(4, -1)
 = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
 = ... crashes: Stack Overflow Error!

2/14/13	

5	

An optimization

n  Notice the following mathematical property:

q  How does this "trick" work?
q  Do you recognize it?
q  How can we incorporate this optimization into our
pow method?

q  What is the benefit of this trick?
q  Go write it.

312 = (32)6 = (9)6 = (81)3 = 81*(81)2

Exercise solution 2
// Returns base ^ exponent.
// Precondition: exponent >= 0
public int pow(int base, int exponent) {
 if (exponent == 0) {
 // base case; any number to 0th power is 1
 return 1;
 } else if (exponent % 2 == 0) {
 // recursive case 1: x^y = (x^2)^(y/2)
 return pow(base * base, exponent / 2);
 } else {
 // recursive case 2: x^y = x * x^(y-1)
 return base * pow(base, exponent - 1);
 }
}

27

Activation records
n  Activation record: memory that Java allocates to store

information about each running method
q  return point ("RP"), argument values, local variables
q  Java stacks up the records as methods are called; a method's

activation record exists until it returns
q  Eclipse debug draws the act. records and helps us trace the

behavior of a recursive method

 _
| x = [4] n = [0] | pow(4, 0)
| RP = [pow(4,1)] |
| x = [4] n = [1] | pow(4, 1)
| RP = [pow(4,2)] |
| x = [4] n = [2] | pow(4, 2)
| RP = [pow(4,3)] |
| x = [4] n = [3] | pow(4, 3)
| RP = [main] |
| | main

