

Recursion

recursion: The definition of an operation in terms of itself.

- Solving a problem using recursion depends on solving smaller occurrences of the same problem.
- recursive programming: Writing methods that call themselves
- directly or indirectly
- An equally powerful substitute for iteration (loops)
- But sometimes much more suitable for the problem

What does this method do?

```
**
    * precondition n>0
    * postcondition ?
    */
    private void printStars(int n) {
        if ( }\textrm{n}==1\mathrm{ ) {
        System.out.println("*");
        } else {
            System.out.print("*");
            printStars(n - 1);
    }
}
```

\qquad
\qquad

Definition of recursion

recursion: n.
See recursion.

Why learn recursion?

- A different way of thinking about problems
- Can solve some problems better than iteration
- Leads to elegant, simple, concise code (when used well)
- Some programming languages ("functional" languages such as Scheme, ML, and Haskell) use recursion exclusively (no loops)

The idea

- Recursion is all about breaking a big problem into smaller occurrences of that same problem.
- Each person can solve a small part of the problem.
- What is a small version of the problem that would be easy to answer?
What information from a neighbor might help you?

Recursive structures

- A directory has
- files
and
- (sub) directories
- An expression has
- operators
- operands, which are
- variables
- constants
- (sub) expressions

Expressions represented by trees

- A tree is
- a node
with
- zero or more sub trees
examples: a*b + c*d $(a+b)^{*}(c+d)$

Structure of recursion

- Each of these examples has
- recursive parts (directory, expression, tree)
a non recursive parts (file, variables, nodes)
- Would we always need non recursive parts?
- Same goes for recursive algorithms.

Cases

- Every recursive algorithm has at least 2 cases:
b base case: A simple instance that can be answered directly.
- recursive case: A more complex instance of the problem that cannot be directly answered, but can instead be described in terms of smaller instances
- Can have more than one base or recursive case, but all have at least one of each.
- A crucial part of recursive programming is identifying these cases.

Base and Recursive Cases: Example

```
public void printStars(int n) {
    if (n == 1) {
        // base case; print one star
        System.out.println("*");
    } else {
        // recursive case; print one more star
        System.out.print("*");
        printStars(n - 1);
    }
}
```


Everything recursive can be done nonrecursively

```
/ Prints a line containing a given number of stars
// Precondition: n >= 0
public void printStars(int n) {
        for (int i = 0; i < n; i++) {
            System.out.print("*");
    }
    System.out.println();
}
```

\}
Recursion Zen: The art of identifying the best set
of cases for a recursive algorithm and expressing
them elegantly.

Exercise

- Write a method reverseLines that accepts a file Scanner prints to System.out the lines of the file in reverse order.
- Write the method recursively and without using loops

Example input:	Expected output:
this is fun no?	no? fun
	is
this	

[^0]- What is a file that is very easy to reverse?

Reversal solution

```
public void reverseLines(Scanner input) {
    if (input.hasNextLine()) {
        // recursive case
        String line = input.nextLine();
        reverseLines(input);
        System.out.println(line);
    }
}
```

 Where is the base case?

Recursive power example

- Write a method that computes x^{n}.

$$
x^{n}=x^{*} x^{*} x^{*} \ldots \text { * }(n \text { times) }
$$

- An iterative solution:

```
public int pow(int x, int n) {
    int product = 1;
    for (int i = 0; i < n; i++) {
        product = product * x;
    }
    return product;
}
```


Exercise solution

Infinite recursion

- A method with a missing or badly written base case can causes infinite recursion
public int pow(int x, int y) {
public int pow(int x, int y) {
return x * pow(x, y - 1); // Oops! No base case
return x * pow(x, y - 1); // Oops! No base case
}
}
pow (4, 3) = 4* pow (4, 2)
pow (4, 3) = 4* pow (4, 2)
 * ** 4* pow(4, 1)
 * ** 4* pow(4, 1)
=4 * 4 * 4 * pow(4, 0)
=4 * 4 * 4 * pow(4, 0)
=4* 4 * 4 * 4 * pow (4, -1)
=4* 4 * 4 * 4 * pow (4, -1)
=4 * 4 * 4 * 4 * 4 * pow (4, -2)
=4 * 4 * 4 * 4 * 4 * pow (4, -2)
= ... crashes: Stack Overflow Error!
= ... crashes: Stack Overflow Error!
Each call sets up a new instance of all the
parameters and the local variables
- When the method completes, control returns to
the method that invoked it (which might be
another invocation of the same method)

How recursion works

- Each call sets up a new instance of all the parameters and the local variables
- When the method completes, control returns to the method that invoked it (which might
another invocation of the same method)

```
pow (4, 3) = 4* pow (4, 2)
```

pow (4, 3) = 4* pow (4, 2)

```
pow (4, 3) = 4* pow (4, 2)
    =4* 4 * pow(4, 1)
    =4* 4 * pow(4, 1)
    =4* 4 * pow(4, 1)
    =4*4* 4* pow (4,0)
    =4*4* 4* pow (4,0)
    =4*4* 4* pow (4,0)
    =4*4*4* 1
    =4*4*4* 1
    =4*4*4* 1
    = 64
```

 = 64
    ```
    = 64
```

Tracing our algorithm

- call stack: The method invocations running at any one time.


```
// Returns base ^ exponent.
```

// Returns base ^ exponent.
// Precondition: exponent >= 0
// Precondition: exponent >= 0
public int pow(int x, int n) {
public int pow(int x, int n) {
if (n == 0) {
if (n == 0) {
// base case; any number to Oth power is 1
// base case; any number to Oth power is 1
return 1;
return 1;
} else {
} else {
// recursive case: }\mp@subsup{x}{}{\wedge}n=x * x^(n-1
// recursive case: }\mp@subsup{x}{}{\wedge}n=x * x^(n-1
return x * pow(x, n-1)
return x * pow(x, n-1)
}
}
}
condition. exponent >=

```
condition. exponent >=
```

\qquad

An optimization

- Notice the following mathematical property:

$$
3^{12}=\left(3^{2}\right)^{6}=(9)^{6}=(81)^{3}=81 *(81)^{2}
$$

- How does this "trick" work?
- Do you recognize it?
- How can we incorporate this optimization into our pow method?
- What is the benefit of this trick?
- Go write it.

Exercise solution 2

```
// Returns base ^ exponent
// Precondition: exponent >= 0
public int pow(int base, int exponent) {
    if (exponent == 0) {
        // base case; any number to Oth power is 1
        return 1;
    else if (exponent % 2 == 0) {
        // recursive case 1: }\mp@subsup{x}{}{\wedge}y=(\mp@subsup{x}{}{\wedge}2)^(y/2
        return pow(base * base, exponent / 2);
    } else {
        // recursive case 2: x^y = x * x^(y-1)
        return base * pow(base, exponent - 1);
    }
}
```


Activation records

- Activation record: memory that Java allocates to store information about each running method
- return point ("RP"), argument values, local variables
- Java stacks up the records as methods are called; a method's activation record exists until it returns
- Eclipse debug draws the act. records and helps us trace the behavior of a recursive method
 ${ }^{27}$

[^0]: - What are the cases to consider?
 - How can we solve a small part of the problem at a time?

