

Recursion - examples

- Problem: given a string as input, write it backward
- Base case?
- Recursion

Dictionary lookup

- Suppose you're looking up a word in the dictionary (paper one, not online!)
- You probably won't scan linearly thru the pages - inefficient.
- What would be your strategy?

Binary search

```
binarySearch(dictionary, word){
```

if (dictionary has one page) (// base case scan the page for word
else \{// recursive case
open the dictionary to a point near the middle determine which half of the dictionary contains word if (word is in first half of the dictionary) \{ binarySearch(first half of dictionary, word) felse f
binarySearch(second half of dictionary, word) \}
\qquad

Binary search

- Write a method binarySearch that accepts

Binary search

```
// Returns the index of an occurrence of the given
    / value in the given array, or -1 if not found
    // Precondition: a is sorted
    public int binarySearch(int[] a, int target) { - 1)
    // Recursive helper to implement search
    private int binarySearch(int[] a, int target,
    if (first > last) { return -1; // not found
    } elsetu
        int mid = (first + last) / 2;
        (a[mid] == target) f
            , else if (a[mid] < target) {
        // middle element too small; search right hal
        return binarySearch(a, target, mid+1, last);
            else { // a[mid] < target middle element too large; search left half
            return binarySearch(a, target, first, mid-1);
            }
}
```


Recursive Algorithms

Example: Tower of Hanoi, move all disks to third peg without

 ever placing a larger disk on a smaller one.

Try to find the pattern by cases

- One disk is easy
- Two disks...
- Three disks...
- Four disk...

Recursive Algorithms

Example: Tower of Hanoi, move all disks to third peg without ever placing a larger disk on a smaller one.

Recursive Algorithms

$$
\begin{aligned}
& \text { Example: Tower of Hanoi, move all disks to third peg without } \\
& \text { ever placing a larger disk on a smaller one. }
\end{aligned}
$$

Recursive Algorithms

Fibonacci numbers

- recursive Fibonacci was expensive because it made many, many recursive calls
- fibonacci(n) recomputed fibonacci($\mathrm{n}-1, \ldots, 1$) many times in finding its answer!
- this is a case, where the sub-tasks handled by the recursion are redundant with each other and get recomputed

Fibonacci numbers

- The Fibonacci numbers are a sequence of numbers $F_{0}, F_{1}, \ldots F_{n}$ defined by:

$$
\begin{aligned}
& \mathrm{F}_{0}=\mathrm{F}_{1}=1 \\
& \mathrm{~F}_{i}=\mathrm{F}_{i-1}+\mathrm{F}_{i-2} \text { for any } i>1
\end{aligned}
$$

- Write a method that, when given an integer i, computes the nth Fibonacci number.

Fibonacci code

- Let's run it for $n=1,2,3, \ldots 10, \ldots, 20, \ldots$
- What happens if $n=5,6,7,8, \ldots$
- Every time n increments with 2, the call tree more than

Growth of rabbit population

112358132134 ...
every 2 months the population at least
DOUBLES

Fractals - the Koch curve

