

Motivation

- Suppose we want to prove the predicate $\mathrm{P}(\mathrm{n})$: for every positive value of n ,

$$
1+2+\ldots+n=n(n+1) / 2 .
$$

- We observe $P(1), P(2), P(3), P(4)$. Conjecture: $\forall n \in N, P(n)$.
- Mathematical induction is a proof technique for proving statements of the form

```
\foralln\inN,P(n).
```


Proving $\mathrm{P}(3)$

- Suppose we know: $P(1) \wedge \forall n \geq 1, P(n) \rightarrow P(n+1)$. Prove: P(3)
- Proof:

1. $P(1)$. [premise]
2. $P(1) \rightarrow P(2)$. [specialization of premise]
3. $\mathrm{P}(2)$. [step 1, 2, \& modus ponens]
4. $P(2) \rightarrow P(3)$. [specialization of premise]
5. $\mathrm{P}(3)$. [step 3, 4, \& modus ponens]

We can construct a proof for every finite value of n

- Modus ponens: if p and $p \rightarrow q$ then q

A Geometrical interpretation

1:

3:
Put these blocks, which represent numbers, together to form sums:

```
1+2=
```

1+2=
1+2+3=\square

```
    1+2+3=\square
```

A Geometrical interpretation

Area is $n^{2} / 2+n / 2=n(n+1) / 2$

```
Example: \(\quad 1+2+\ldots+n=n(n+1) / 2\).
- Verify: \(\mathrm{F}(1): 1(1+1) / 2=1\).
- Assume: \(\mathrm{F}(n)=n(n+1) / 2\)
- Show: \(\mathrm{F}(n+1)=(n+1)(n+2) / 2\).
    \(\mathrm{F}(n+1)=1+2+\ldots+n+(n+1)\)
        \(=\mathrm{F}(n)+n+1\)
        \(=n(n+1) / 2+n+1 \quad\) [Induction hyp.]
        \(=n(n+1) / 2+2(n+1) / 2\)
        \(=(n+1)(n+2) / 2\).
Example: \(1+2+\ldots+n=n(n+1) / 2\).
- Verify: \(F(1): 1(1+1) / 2=1\).
- Assume: \(\mathrm{F}(n)=n(n+1) / 2\)
- Show: \(F(n+1)=(n+1)(n+2) / 2\).
\(\mathrm{F}(n+1)=1+2+\ldots+n+(n+1)\)
\(=\mathrm{F}(n)+n+1\)
\(=n(n+1) / 2+2(n+1) / 2\)
\(=(n+1)(n+2) / 2\).
```

\qquad

The Principle of Mathematical Induction

- Let $P(n)$ be a statement that, for each natural number n , is either true or false.
- To prove that $\forall n \in N, P(n)$, it suffices to prove: - $\mathrm{P}(1)$ is true. (base case) - $\forall n \in N, P(n) \rightarrow P(n+1)$. (inductive step)
- This is not magic.
- It is a recipe for constructing a proof for an arbitrary $n \in N$.

Mathematical Induction and the Domino Principle If
the $1^{\text {st }}$ domino falls over and
the nth domino falls over implies that domino $(n+1)$ falls over
then
domino n falls over for all $n \in \mathbf{N}$.

Example

- Show that any postage of $\geq 8 \phi$ can be obtained using 3ϕ and 5ϕ stamps.
, First check for a few values:

```
8\phi = 3\phi+5\phi
9\phi = 3\phi+3\phi+3\phi
10\phi = 5\phi+5\phi
11\phi = 5 
12\phi = 3\phi+3\phi+3\phi+3\phi
> How to generalize this?
```


Example

- Let $P(n)$ be the sentence " n cents postage can be obtained using 3ϕ and 5ϕ stamps".
- Want to show that
" $P(k)$ is true" implies " $P(k+1)$ is true" for all $k \geq 8$.
- 2 cases:

1) $P(k)$ is true and the k cents contain at least one 5ϕ.
2) $P(k)$ is true and the k cents do not contain any 5ϕ.

Example

Case 1: k cents contain at least one 5ϕ stamp.

Case 2: k cents do not contain any 5ϕ stamp.
Then there are at least three 3ϕ stamp


```
Examples
- Show that 1+2+2 2 + .. + + 2n}=\mp@subsup{2}{}{n+1}-
- Show that for n\geq4 2 < n!
- Show that n}\mp@subsup{n}{}{3}-n\mathrm{ is divisible by 3 for every
    positive n.
- Show that 1+3+5+\ldots+(2n+1)=(n+1)}\mp@subsup{)}{}{2
- Prove that a set with n elements has 2n
    subsets
```


Strong induction

- Induction
- $P(1)$ is true.
- $\forall n \in N, P(n) \rightarrow P(n+1)$.
- Implies $\forall n \in N, P(n)$
- Strong induction:
- $P(1)$ is true.
- $\forall n \in N,(P(1) \wedge P(2) \wedge \ldots \wedge P(n)) \rightarrow P(n+1)$.
- Implies $\forall \mathrm{n} \in \mathrm{N}, \mathrm{P}(\mathrm{n})$

All horses have the same color

- Base case: If there is only one horse, there is only one color.
- Induction step: Assume as induction hypothesis that within any set of n horses, there is only one color. Now look at any set of $n+1$ horses. Number them: $1,2,3, \ldots$, $\mathrm{n}, \mathrm{n}+1$. Consider the sets $\{1,2,3, \ldots, \mathrm{n}\}$ and $\{2,3,4, \ldots$, $n+1\}$. Each is a set of only n horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all $\mathrm{n}+1$ horses.
- This is clearly wrong, but can you find the flaw?

Example

- Prove that all natural numbers ≥ 2 can be represented as a product of primes.
- Basis: 2: 2 is a prime.
- Assume that $1,2, \ldots, n$ can be represented as a product of primes.

Example

- Show that $n+1$ can be represented as a product of primes.
- Case $\mathrm{n}+1$ is a prime: It can be represented as a product of 1 prime, itself.
- Case $\mathrm{n}+1$ is composite: Then, $\mathrm{n}+1=\mathrm{ab}$, for some a,b < n + 1 .
- Therefore, $a=p_{1} p_{2} \ldots p_{k} \& b=q_{1} q_{2} \ldots q_{1}$, where the $p_{i} s$ \& $\mathrm{q}_{\mathrm{i}} \mathrm{s}$ are primes.
- Represent $n+1=p_{1} p_{2} \ldots p_{k} q_{1} q_{2} \ldots q_{1}$.

Induction and Recursion

- Induction is useful for proving correctness/ design of recursive algorithms
- Example
// Returns base ^ exponent.
// Precondition: exponent >= 0
public static int pow(int x, int n)
if ($\mathrm{n}==0$)
// base case; any number to 0th power is 1 return 1;
\} else \{
// recursive case: $x^{\wedge} n=x$ * $x^{\wedge}(n-1)$
return x * pow (x, n-1);
\}
\qquad

Induction and Recursion

- n ! of some integer n can be characterized as: $\mathrm{n}!=1$ for $\mathrm{n}=0$; otherwise $n!=n(n-1)(n-2) . . .1$
- Want to write a recursive method for computing it. We notice that $n!=n(n-1)$!
- This is all we need to put together the method: public static int factorial(int n) $\{$
if ($\mathrm{n}==0$) \{ return 1;
\} else \{
return n * factorial(n-1); ,
\}

More induction examples

- Let n be a positive integer. Show that every $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled using right triominoes, each covering three squares at a time.

