Counting: Basics

Counting: the product rule

- If there are n_{l} ways of doing one task, and for each of way of doing the first task there are n_{2} ways of doing a second task, then there are $n_{l} n_{2}$ ways of performing both tasks.
- Example:
- You have 6 pairs of pants and 10 shirts. How many different outfits does this give?

Relation to Cartesian products

- The Cartesian product of sets A and B is denoted by $\boldsymbol{A} \boldsymbol{x} \boldsymbol{B}$ and is defined as:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

$-|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}| *|\mathbf{B}|$

More examples

- How many binary numbers with 7 digits are there?
- How many functions are there from a set with m elements to a set with n elements?
- How many one-to-one functions are there from a set with m elements to a set with n elements?

More examples

- Use the product rule to show that the number of different subsets of a finite set S is $2^{|S|}$
- Product rule and Cartesian products:

$$
-\left|A_{1} \times A_{2} \times, \ldots, x A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| x, \ldots, x\left|A_{n}\right|
$$

Sum Rule

- X has decided to shop at a single store, either in the north end of town or the south end of town. If X visits the north, X will shop at one of three stores. If X visits the south, then X will shop at one of two stores. How many ways could X end up shopping?

The Sum Rule

- If a task can be done either in one of n_{l} ways or in one of n_{2} ways, and none of the n_{l} ways is the same as the n_{2} ways, then there are n_{1} $+n_{2}$ ways to do the task.
- This is a statement about set theory: if two sets A and B are disjoint then

$$
|A \cup B|=|A|+|B|
$$

Example

- A student can choose a computer project from one of three lists. The three lists contain 23,15 , and 4 possible projects. No project is on more than one list. How many possible projects are there to choose from?

The inclusion exclusion principle

- A more general statement than the sum rule:

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{~B}|
$$

Example

- Suppose you need to pick a password that has length 6-8 characters, where each character is an uppercase letter or a digit, and each password must contain at least one digit. How many possible passwords are there?
- (Recall: $|A \cup B|=|A|+|B|-|A \cap B|)$

The inclusion exclusion principle

- How many bit strings of length eight start with a 1 or end with 00 ?

1------ how many?
-----00 how many?
if I add these
how many have I now counted twice?

Examples

- In a group of 367 people, there must be at least two with the same birthday
- A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A guy takes socks out at random in the dark.
- How many socks must he take out to be sure that he has at least two socks of the same color?
- How many socks must he take out to be sure that he has at least two black socks?

The pigeonhole principle

- If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more objects.

Examples

- Show that if five different digits between 1 and 8 are selected, there must be at least one pair of these with a sum equal to 9 .
- ask yourself: what are the pigeon holes? what are the pigeons?

