

Permutations

- In a family of 5 , how many ways can we arrange the members of the family in a line for a photograph?

\square

Permutations

- A permutation of a set of distinct objects is an ordered arrangement of these objects.
- Example: (1, 3, 2, 4) is a permutation of the numbers 1, 2, 3, 4
- How many permutations of n objects are there?

How many permutations?

- How many permutations of n objects are there?
- Using the product rule:

$$
n \cdot(n-1) \cdot(n-2), \ldots, 2 \cdot 1=n!
$$

The Traveling Salesman Problem (TSP)
TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

Objective: find a permutation $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ of the cities that minimizes

$$
\begin{array}{r}
d\left(a_{1}, a_{2}\right)+d\left(a_{2}, a_{3}\right)+\ldots+ \\
d\left(a_{n-1}, a_{n}\right)+d\left(a_{n}, a_{1}\right)
\end{array}
$$

where $d(i, j)$ is the distance between
An optimal TSP tour through Germany's 15 largest cities cities i and

Solving TSP

- Go through all permutations of cities, and evaluate the sum-of-distances, keeping the optimal tour.
- Need a method for generating all permutations
- Note: how many solutions to a TSP problem with n cities?

Generating Permutations

- Let's design a recursive algorithm for generating all permutations of $\{1,2, \ldots, n\}$.
- Starting point: decide which element to put first
a what needs to be done next?
a what is the base case?
r-permutations - example
- How many ways are there to select a firstprize winner, a second prize winner and a third prize winner from 100 people who have entered a contest?
\qquad

Combinations
- The number of r -combinations out of a set
with n elements is denoted as $\mathrm{C}(\mathrm{n}, \mathrm{r})$ or $\binom{n}{r}$
$\square\{1,3,4\}$ is a 3-combination of $\{1,2,3,4\}$
- How many 2-combinations of $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

r-combinations

- How many r-combinations?

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

Note that $\mathrm{C}(\mathrm{n}, 0)=1$

- C(n,r) satisfies:

$$
C(n, r)=C(n, n-r)
$$

\square We can see that easily without using the formula

Unordered versus ordered selections

- Two ordered selections are the same if
- the elements chosen are the same;
a the elements chosen are in the same order.
- Ordered selections: r-permutations.
- Two unordered selections are the same if
- the elements chosen are the same. (regardless of the order in which the elements are chosen)
- Unordered selections: r-combinations.

Relationship between $\mathrm{P}(\mathrm{n}, \mathrm{r})$ and $\mathrm{C}(\mathrm{n}, \mathrm{r})$

- Suppose we want to compute $P(n, r)$.
- Constructing an r-permutation from a set of n elements can be thought as a 2-step process:

Step 1: Choose a subset of r elements;
Step 2: Choose an ordering of the r-element subset.

- Step 1 can be done in C(n,r) different ways.
- Step 2 can be done in r! different ways.
- Based on the multiplication rule, $P(n, r)=C(n, r) \cdot r$!
- Thus

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!\cdot(n-r)!}
$$

Example

- The faculty in biology and computer science want to develop a program in computational biology. A committee of 4 composed of two biologists and two computer scientists is tasked with doing this. How many such committees can be assembled out of 20 CS faculty and 30 biology faculty?

Some Advice about Counting

- Apply the multiplication rule if
- The elements to be counted can be obtained through a multistep selection process.
- Each step is performed in a fixed number of ways regardless of how preceding steps were performed.
- Apply the addition rule if
- The set of elements to be counted can be broken up into disjoint subsets
- Apply the inclusion/exclusion rule if
- It is simple to over-count and then to subtract duplicates

Some more advice about Counting

- Make sure that

1) every element is counted;
2) no element is counted more than once. (avoid double counting)

- When using the addition rule:

1) every outcome should be in some subset;
2) the subsets should be disjoint; if they are not, subtract the overlaps

Computing $\mathrm{C}(\mathrm{n}, \mathrm{k})$ recursively

- consider the nth object

$$
\begin{array}{cll}
\mathrm{C}(\mathrm{n}, \mathrm{k})= & \mathrm{C}(\mathrm{n}-1, \mathrm{k}-1) & + \\
\text { pick } \mathrm{n} & \text { or }(\mathrm{n}-1, \mathrm{k}) \\
\text { don't }
\end{array}
$$

Example using Inclusion/Exclusion Rule

How many integers from 1 through 100 are multiples of 4 or multiples of 7 ?

A: integers from 1 through 100 which are multiples of 4 ;
B: integers from 1 through 100 which are multiples of 7 . we want to find $|A \cup B|$.
$|A \cup B|=|A|+|B|-|A \cap B|$ (incl./excl. rule)
$A \cap B$ is the set of integers from 1 through 100 which are multiples of 28.
\qquad
\qquad
\qquad
$\mathrm{C}(\mathrm{n}, \mathrm{k})$: base case

- C(k, k) = 1 Why?
- $C(n, 0)=1$

Why?

Recurrence relation

- We can write this as a recurrence relation
- a recursive mathematical expression
$C(n, k)=C(n-1, k-1)+C(n-1, k)$ pick n or don't
$C(k, k)=1$
$C(n, 0)=1$
and we can code this easily as a recursive method.

