
3/23/13	

1	

Inheritance

The software crisis

n  software engineering: The practice of conceptualizing,
designing, developing, documenting, and testing large-
scale computer programs.

n  Large-scale projects face many issues:
q  getting many programmers to work together
q  getting code finished on time
q  avoiding redundant code
q  finding and fixing bugs
q  maintaining, improving, and reusing existing code

n  code reuse: The practice of writing program code once
and using it in many contexts.

Example

n  You have been tasked with writing a program
that handles pay for the employees of a non-
profit organization.

n  The organization has several types of
employees on staff:
q  Full-time employees
q  Hourly workers
q  Volunteers
q  Executives

Example

n  Paying an employee:
q  Full-time employees – have a monthly pay
q  Hourly workers – hourly wages + hours worked
q  Volunteers – no pay
q  Executives – receive bonuses

Design

n  Need class/classes that handle employee
pay (should also store employee info such as
name, phone #, address).

n  Possible choices:
q  A single Employee class that knows how to

handle different types of employees
q  A separate class for each type of employee.

n  What are the advantages/disadvantages of
each design?

Design

n  All types of staff members need to have
some basic functionality – capture that in a
class called StaffMember

3/23/13	

2	

Design
public class StaffMember {
 private String name;

 private String address;

 private String phone;

 public StaffMember (String eName, String eAddress,

 String ePhone) {

 name = eName;

 address = eAddress;

 phone = ePhone;
 }

 // not shown: getters and setters

}

All types of staff members
need to have some basic
functionality – capture that
in a class called
StaffMember

Code re-use

n  We'd like to be able to do the following:

// A class to represent a paid employee.
public class Employee {
 <copy all the contents from StaffMember class.>

 private double payRate;
 public double pay() {
 return payRate;
 }

}

n  All this without explicitly copying any code!

Inheritance

n  inheritance: A way to create new classes based on
existing classes, taking on their attributes/behavior.
q  a way to group related classes
q  a way to share code between classes

n  A class extends another by absorbing its state and
behavior.
q  super-class: The parent class that is being extended.
q  sub-class: The child class that extends the super-class and

inherits its behavior.
n  The subclass receives a copy of every field and method from its

super-class.
n  The subclass is a more specific type than its super-class (an is-a

relationship)

Inheritance syntax
n  Creating a subclass, general syntax:

 public class <name> extends <superclass name> {
q  Example:
 public class Employee extends StaffMember {

 }

n  By extending StaffMember, each Employee object now:
q  has name, address, phone instance variables and
 get/setName(), get/setAddress(), get/setPhone() methods

automatically

q  can be treated as a StaffMember by any other code (seen later)

(e.g. an Employee could be stored in a variable of type StaffMember
or stored as an element of an array StaffMember[])

Single Inheritance in Java

n  Creating a subclass, general syntax:
q  public class <name> extends <superclass name>
q  Can only extend a single class in Java!

n  Extends creates an is-A relationship
q  class <name> is-A <superclass name>
q  This means that anywhere a <superclass variable> is

used, a <subclass variable> may be used.
q  Classes get all the instance variables/methods of their ancestors,

but cannot necessarily directly access them...

New access modifier - protected

n  public - can be seen/used by everyone

n  protected – can be seen/used within class
and any subclass.

n  private - can only be seen/used by code in

class (not in subclass!)

3/23/13	

3	

Extends/protected/super
public class Employee extends StaffMember {
 protected String socialSecurityNumber;
 protected double payRate;

 public Employee (String name, String address,

 String phone, String socSecNumber, double rate){

 super(name, address, phone);
 socialSecurityNumber = socSecNumber;
 payRate = rate;

 }

 public double pay(){

 return payRate;
 }

}

StaffMember needs to change a bit
public class StaffMember {
 protected String name;
 protected String address;
 protected String phone;

 public StaffMember (String eName, String eAddress, String
ePhone) {

 name = eName;

 address = eAddress;

 phone = ePhone;

 }

}

Overriding methods

n  override: To write a new version of a method in a
subclass that replaces the super-class's version.
q  There is no special syntax for overriding.

To override a super-class method, just write a new version of it in
the subclass. This will replace the inherited version.

q  Example:

 public class Hourly extends Employee {
 // overrides the pay method in Employee class
 public double pay () {

 double payment = payRate * hoursWorked;

 hoursWorked = 0;

 return payment;

 }

Calling overridden methods

n  The new method often relies on the
overridden one. A subclass can call an
overridden method with the super keyword.

n  Calling an overridden method, syntax:

 super.<method name> (<parameter(s)>)
q  public class Executive extends Employee {

 public double pay() {
 double payment = super.pay() + bonus;

 bonus = 0;

 return payment;
 }

Inheritance and
Polymorphism

Constructors

n  Constructors are not inherited.
q  Default constructor:
 public Employee(){

 super(); // calls StaffMember() constructor
}

q  Constructor needs to call super-class constructors explicitly:

 public Employee (String name, String address, String phone,
 String socSecNumber, double rate) {

 super (name, address, phone);

 socialSecurityNumber = socSecNumber;

 payRate = rate;

 }

The super call must be the first
statement in the constructor.

3/23/13	

4	

Everything is an Object

n  Every class in Java implicitly extends the Java
Object class.

n  Therefore every Java class inherits all the
methods of the class Object, such as
q  equals(Object other)
q  toString()

n  Often we want to override the standard
implementation

n  Note the difference between overloading and
overriding!

The equals method
n  You might think that the following is a valid implementation of the

equals method:
 public boolean equals(Object other) {
 if (name == other.name) {
 return true;
 } else {
 return false;
 }
 }

However, it does not compile.
StaffMember.java:36: cannot find symbol
symbol : variable name
location: class java.lang.Object

n  Why? Because an Object does not have a name
instance variable.

Type casting

n  The object that is passed to equals can be cast from
Object into your class's type.

q  Example:

 public boolean equals(Object o) {
 StaffMember other = (StaffMember) o;

 return name == other.name;
 }

n  Type-casting with objects behaves differently than
casting primitive values.
q  We are really casting a reference of type Object into a

reference of type StaffMember.
q  We're promising the compiler that o refers to a StaffMember

object, and thus has an instance variable name.

Type casting: equals example

n  The object that is passed to equals can be cast from
Object into your class's type.

n  Equals example:

 public boolean equals(Object o) {
 StaffMember other = (StaffMember) o;
 return name == other.name;
 }

instanceof

n  We can use a keyword called instanceof to ask
whether a variable refers to an object of a given type.
q  The instanceof keyword, general syntax:

 <variable> instanceof <type>

q  The above is a boolean expression that can be used as the test

in an if statement.

q  Examples:
 String s = "hello";
 StaffMember p = new StaffMember(…);
 if(s instanceof String) ...
 if(p instanceof String) ...

Our final version of equals

n  This version of the equals method allows us to correctly
compare StaffMember objects with any type of object:

// Returns whether o refers to a StaffMember
// object with the same name
public boolean equals(Object o) {
 if (o instanceof StaffMember) {
 StaffMember other = (StaffMember) o;
 return name == other.name;
 } else {
 return false;
 }
}

3/23/13	

5	

Binding: which method is called?
n  Assume that the following four classes have been declared:

public class Foo {
 public void method1() {
 System.out.println("foo 1");
 }

 public void method2() {
 System.out.println("foo 2");
 }

 public String toString() {
 return "foo";
 }
}

public class Bar extends Foo {
 public void method2() {
 System.out.println("bar 2");
 }
}

Example
public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }

 public String toString() {
 return "baz";
 }
}

public class Mumble extends Baz {
 public void method2() {
 System.out.println("mumble 2");
 }
}

n  The output of the following client code?

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
 a[i].method1();
 a[i].method2();
 System.out.println();
}

Describing inheritance and binding

n  UML diagram:
Subclasses point to their
super-class

n  List methods (inherited
methods in parenthesis)

n  Method called is the
nearest in the hierarchy
going up the tree
q  This is a dynamic (run

time) phenomenon called
dynamic binding

Example (solved)

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
 a[i].method1();
 a[i].method2();
 System.out.println();
}

Output? baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1

mumble 2

foo
foo 1
foo 2

Polymorphism
n  It’s legal for a variable of a super-class to refer

to an object of one of its subclasses.
 Example:

 staffList = new StaffMember[6];
 staffList[0] = new Executive("Sam", "123 Main Line",

 "555-0469", "123-45-6789", 2423.07);

 staffList[1] = new Employee("Carla", "456 Off Line",
 "555-0101", "987-65-4321", 1246.15);

 staffList[2] = new Employee("Woody", "789 Off Rocker",
 "555-0000", "010-20-3040", 1169.23);

 ((Executive)staffList[0]).awardBonus (500.00);

Arrays of a super-class type can store any subtype as elements.

Polymorphism and casting

n  When a primitive type is used to store a value
of another type (e.g. an int in a double
variable) conversion takes place.

n  When a subclass is stored in a superclass no
conversion occurs!

3/23/13	

6	

Polymorphism defined

n  Polymorphism: the ability for the same code to
be used with several different types of objects
and behave differently depending on the actual
type of object used.

n  Example:
 for (int count=0; count < staffList.length; count++)
{

 amount = staffList[count].pay(); // polymorphic

 }

Polymorphism and parameters

n  You can pass any subtype of a parameter's
type.

public class EmployeeMain {
 public static void main(String[] args) {
 Executive lisa = new Executive(…);
 Volunteer steve = new Volunteer(…);
 payEmployee(lisa);
 payEmployee(steve);
 }

 public static void payEmployee(StaffMember s) {
 System.out.println("salary = " + s.pay());
 }

}

Notes about polymorphism

n  The program doesn’t know which pay method
to call until it’s actually running. This has
many names: late binding, dynamic binding,
virtual binding, and dynamic dispatch.

n  You can only call methods known to the
super-class, unless you explicitly cast.

n  You cannot assign a super-class object to a
sub-class variable (a cow is an animal, but
an animal is not a cow!)

Abstract classes
n  An abstract class: can leave one or more method

implementations unspecified
n  An abstract method has no body (i.e.,no implementation).
n  Hence, an abstract class is incomplete and cannot be

instantiated, but can be used as a base class.
 abstract public class abstract-base-class-name {
 public abstract return-type method-name(params);
 ...

 }

 public class derived-class-name {

 public return-type method-name(params)
 { statements; }

 ...
 }

A subclass is required to override the abstract
method and provide an implementation.

Example

n  Let’s convert Employee to an abstract
class....

Example

n  Let’s convert Employee to an abstract
class.

 public abstract class Employee {
 ...
 public abstract double pay();
 }

n  Now the sub classes must override pay(),

thereby implementing pay() appropriately
for each sub type of Employee

3/23/13	

7	

Abstract classes

n  When to use abstract classes

q  To represent entities that are insufficiently defined
q  Group together data/behavior that is useful for its

subclasses

Inheritance: FAQ
n  How can a subclass call a method or a constructor

defined in a super-class?
q  Use super() or super.method()

n  Does Java support multiple inheritance?
q  No. Use interfaces instead

n  What restrictions are placed on method overriding?
q  Same name, argument list, and return type. May not throw

exceptions that are not thrown by the overriden method, or limit
the access to the method

n  Does a class inherit the constructors of its super-class?
q  No. Need to call them explicitly

this and super in constructors

n  this(…) calls a constructor of the same
class.

n  super(…) calls a constructor of the super-
class.

n  Both need to be the first action in a
constructor.

