
3/29/13	

1	

Interfaces

Savitch ch. 8.4

Relatedness of types

n  Consider the task of writing classes to represent
2D shapes such as Circle, Rectangle, and
Triangle.

n  There are certain attributes or operations that
are common to all shapes:

 perimeter, area
n  By being a Shape, you promise that you can

compute those attributes, but each shape
computes them differently.

Interface as a contract

n  Analogous to the idea of roles or certifications in real life:
q  "I'm certified as a CPA accountant. The

certification assures you that I know how to do
taxes, perform audits.”

Compare to:
q  "I'm certified as a Shape. That means you can be

sure that I know how to compute my area and
perimeter.”

The area and perimiter of shapes

n  Rectangle (as defined by width w and height h):
 area = w h
 perimeter = 2w + 2h

n  Circle (as defined by radius r):
 area = π r2
 perimeter = 2 π r

n  Triangle (as defined by side lengths a, b, and c)
 area = √(s (s - a) (s - b) (s - c))
 where s = ½ (a + b + c)
 perimeter = a + b + c

Interfaces

n  interface: A list of methods that a class promises to
implement.
q  Inheritance gives you an is-a relationship and code-sharing.

n  An Executive object can be treated as a StaffMember, and
Executive inherits StaffMember’s code.

q  Interfaces give you an is-a relationship without code sharing.
n  Only method stubs in the interface
n  Object can-act-as any interface it implements
n  A Rectangle object can be treated as a Shape as long as it implements

the interface.

Interfaces with abstract classes
public abstract class Shape {
 public abstract double area();
 public abstract double perimeter();
 }

3/29/13	

2	

Java Interfaces

n  An interface for shapes:

 public interface Shape {
 public double area();
 public double perimeter();
 }

q  This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)

n  Interface declaration syntax:
public interface <name> {
 public <type> <name>(<type> <name>, ..., <type> <name>);
 public <type> <name>(<type> <name>, ..., <type> <name>);
 ...
 public <type> <name>(<type> <name>, ..., <type> <name>);
}

n  All methods are public!

Implementing an interface
public class Circle implements Shape {
 private double radius;

 // Constructs a new circle with the given radius.
 public Circle(double radius) {
 this.radius = radius;
 }

 // Returns the area of the circle.
 public double area() {
 return Math.PI * radius * radius;
 }

 // Returns the perimeter of the circle.
 public double perimeter() {
 return 2.0 * Math.PI * radius;
 }
}

Implementing an interface

n  A class can declare that it implements an
interface.
q  This means the class contains an implementation

for each of the abstract methods in that interface.
(Otherwise, the class will fail to compile.)

n  Syntax for implementing an interface
 public class <name> implements

<interface name> {
 ...
 }

Requirements
n  If we write a class that claims to be a Shape but doesn't

implement the area and perimeter methods, it will not
compile.

q  Example:
 public class Banana implements Shape {
 //without implementing area or perimiter
 }

q  The compiler error message:
 Banana.java:1: Banana is not abstract and does
not override abstract method area() in Shape
 public class Banana implements Shape {

 ^

Diagramming an interface

n  We draw arrows upward from the classes to the
interface(s) they implement.
q  There is a supertype-subtype relationship here;

e.g., all Circles are Shapes, but not all Shapes are
Circles.

Rectangle
public class Rectangle implements Shape {
 private double width;
 private double height;

 // Constructs a new rectangle with the given

dimensions.
 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 // Returns the area of this rectangle.
 public double area() {
 return width * height;
 }

 // Returns the perimeter of this rectangle.
 public double perimeter() {
 return 2.0 * (width + height);
 }
}

3/29/13	

3	

Triangle
public class Triangle implements Shape {
 private double a;
 private double b;
 private double c;

 // Constructs a new Triangle given side lengths.
 public Triangle(double a, double b, double c) {
 this.a = a;
 this.b = b;
 this.c = c;
 }
 // Returns a triangle's area using Heron's formula.
 public double area() {
 double s = (a + b + c) / 2.0;
 return Math.sqrt(s * (s – a)*(s – b)*(s - c));
 }
 // Returns the perimeter of the triangle.
 public double perimeter() {
 return a + b + c;
 }
}

Interfaces and polymorphism
n  The is-a relationship provided by the interface means that the client

can take advantage of polymorphism.

n  Example:
 public static void printInfo(Shape s) {
 System.out.println("The shape: " + s);
 System.out.println("area : " + s.area());
 System.out.println("perim: " + s.perimeter());
 System.out.println();
 }

n  Any object that implements the interface may be passed as the

parameter to the above method.
 Circle circ = new Circle(12.0);
 Triangle tri = new Triangle(5, 12, 13);
 printInfo(circ);
 printInfo(tri);

Interface is a type!

Interfaces and polymorphism

n  We can create an array of an interface type, and store
any object implementing that interface as an element.

 Circle circ = new Circle(12.0);
 Rectangle rect = new Rectangle(4, 7);
 Triangle tri = new Triangle(5, 12, 13);

 Shape[] shapes = {circ, tri, rect};
 for (int i = 0; i < shapes.length; i++) {
 printInfo(shapes[i]);
 }

q  Each element of the array executes the appropriate behavior for

its object when it is passed to the printInfo method, or when
area or perimeter is called on it.

Comments about Interfaces

n  The term interface also refers to the set of public
methods through which we can interact with objects of a
class.

n  Methods of an interface are abstract.
n  Think of an interface as an abstract base class with all

abstract methods
n  Interfaces are used to define a contract for how you

interact with an object, independent of the underlying
implementation.

n  Separate behavior (interface) from the implementation

When to use interfaces or abstract classes

n  An abstract class: mix of abstract and non-
abstract methods, so some default
implementations.

n  An abstract class can also have static
methods, private and protected methods, etc.

Interfaces and inheritance

n  Interfaces allow us to get around the Java
limitation of no multiple inheritance – a class can
implement several interfaces
 class ImplementsSeveral implements

 Interface1, Interface2 {
 // implementation

 }

n  Inheritance can be applied to interfaces – an
interface can be derived from another interface

3/29/13	

4	

Commonly used Java interfaces

n  The Java class library contains classes and
interfaces

n  Comparable – allows us to order the elements
of an arbitrary class

n  Serializable (in java.io) – for classes
whose objects are able to be saved to files.

n  List, Set, Map, Iterator (in
java.util) – describe data structures for
storing collections of objects

Comparable
 public interface Comparable<E> {
 public int compareTo(E other);
 }

n  A class can implement the Comparable interface to

define a natural ordering for its objects.

n  A call of a.compareTo(b) should return:
a value < 0 if a comes "before" b in the ordering,
a value > 0 if a comes "after" b in the ordering,
or 0 if a and b are considered "equal" in the ordering.

compareTo tricks

n  delegation trick - If your object's fields are
comparable (such as strings), you can use
their compareTo:

// sort by employee name
public int compareTo(StaffMember other) {
 return name.compareTo(other.getName());
}

Comparable and sorting

n  The Arrays class in java.util has a static method
sort that sorts the elements of an array

StaffMember [] staff = new StaffMember[3];
staff[0] = new Executive(…);
staff[1] = new Employee(…)
staff[2] = new Hourly(…);
staff[3] = new Volunteer(…);
Arrays.sort(staff);

Note that you will need to provide an implementation of
compareTo

n  Show StaffMember example

Another example
 public class Contact implements Comparable<Contact>{
 private String firstName, lastName, phone;

 public boolean equals (Object other) {
 if (!(other instanceof Contact)) return false;

 return (lastName.equals(((Contact)other).getLastName()) &&

 firstName.equals(((Contact)other).getFirstName()));

 }

 // Uses both last and first names to determine ordering.

 public int compareTo (Contact other) {
 String otherFirst = other.getFirstName();

 String otherLast = other.getLastName();

 if (lastName.equals(otherLast))

 return firstName.compareTo(otherFirst);

 else

 return lastName.compareTo(otherLast);

 }

 }
Note the difference in the parameters of compareTo() and equals()
In version 1.4 of Java compareTo() needed parameter of type Object

3/29/13	

5	

import java.util.*;
public class PhoneList {

 public static void main (String[] args) {

 Contact[] friends = new Contact[6];

 friends[0] = new Contact ("John", "Smith", "610-555-7384");

 friends[1] = new Contact ("Sarah", "Barnes", "215-555-3827");

 friends[2] = new Contact ("Mark", "Riley", "733-555-2969");

 friends[3] = new Contact ("Laura", "Getz", "663-555-3984");

 friends[4] = new Contact ("Larry", "Smith", "464-555-3489");

 friends[5] = new Contact ("Frank", "Phelps", "322-555-2284");

 Arrays.sort(friends);

 for (int i=0; i<friends.length; i++)

 System.out.println (friends[i]);

 }

}

ArrayList
n  The ArrayList declaration:

 public class ArrayList<E> extends
AbstractList<E> implements List<E>,
RandomAccess, Cloneable, Serializable

n  The List interface includes:
 Method

E get(int index) Returns the element at the specified
position

int indexOf(Object o) Returns the index of the first occurrence
of the specified element

E remove(int index) Removes the element at the specified
position

E set(int index,
E element)

Replaces the element at the specified
position

Lists and collections

n  The declaration of the List interface:
 public interface List<E> extends
Collection<E>

n  Has methods that any collection of elements should
have: add, clear(), contains, isEmpty(),
remove, size()

Interface for a sorted list

n  Let’s design the interface for a list of items
that is supposed to be maintained in sorted
order.

