
4/27/13	  

1	  

Static revisited 

Static methods 
// Example: 
// Java's built in Math class 
public class Math {   
    public static int abs(int a) { 
        if (a >= 0) { 
            return a; 
        } else { 
            return -a; 
        } 
    } 
    public static double toDegrees(double radians) { 
        return radians * 180 / PI; 
    } 
} 
 
// Using the class: 
System.out.println(Math.abs(-5));   
//didn’t need to create any object 

Static methods 

n  static: Part of a class, not part of an object. 
n  Static methods: 

q  Do not require an instance of the class and do not 
understand the implicit parameter, this;   
therefore, cannot access an object's instance 
variables 

q  good for code related to a class but not to each 
object's state 

q  if public, can be called from inside or outside the 
class 

Static variables 

n  static: Part of a class, rather than part of an object. 
q  Classes can have static variables. 
q  Static variables are not replicated in each object;  

a single variable is shared by all objects of that class. 
 
 private static type name; 

 

 or, 
 

 private static type name = value; 
 

q  Example: 
 private static int count = 0; 

Example 

n  You are writing a class to represent a bank 
account, and you would like the constructor 
to automatically assign a running number as 
the account number. 

n  How can static variables help you? 

Assigning ids for BankAccount 
public class BankAccount { 
 

    // static variable for assigning an account number 
    // (shared among all instances of the class) 
    private static int lastAssignedNumber = 1000; 

 
    // instance variables(replicated for each object) 
    private float balance; 
    private int id; 
 
    public BankAccount(float initial_balance) { 
        lastAssignedNumber++;    // advance the id 
        id = lastAssignedNumber; // give number to account 
        balance = initial_balance; 
    } 
 

    ... 
 

    public int getID() {   // return this account's id 
        return id; 
    } 
} 



4/27/13	  

2	  

Figure from:  Big Java by Cay Horstmann 

Static variables 

q  Initializing static variables 
1.  Do nothing. variable is initialized with 0 (for numbers), false (for 

boolean values), or null (for objects)  

2.  Use an explicit initializer, such as  
 public class BankAccount  

  { 
     ...  
     private static int lastAssignedNumber = 1000;  
     // Executed once  
  }  

q  Static variables should usually be declared private  

Static variables 

q  Exception: Static constants, which may be either private or 
public:  
q  public class BankAccount  

{ 
   ...  
   public static final double OVERDRAFT_FEE = 5; 

     // Refer to it as BankAccount.OVERDRAFT_FEE  
} 

q  Minimize the use of static variables (static final variables are 
ok) 

Examples in the Java library 

n  Static variables in the System class:  

q   System.in and System.out.  

 

q  And in the Java Math class: 

public class Math { 
   public static final double PI = 3.141592653589793; 
   public static final double E = 2.718281828459045; 
 
    ... 
 
} 

 

 

Java packages 

Savitch Chapter 6.7 

Creating a Java Package 

public class Rectangle extends Shape 
{ 
  double width, height; 
  public Rectangle(int x, int y, 
             double h, double w ) { 
    super(x, y); 
    width = w; 
    height = h; 
  } 
} 

Rectangle.java 
// a shape stores its position 
// on the screen 
public abstract class Shape { 
  int x,y; 
  public Shape(int x, int y){ 
    this.x = x; 
    this.y = y; 
  } 
} 

Shape.java 

public class Circle extends Shape { 
  double radius; 
  public Circle(int x, int y, double r) { 
    super(x, y); 
    radius = r; 
  } 
} 

Circle.java 



4/27/13	  

3	  

Some motivation 

n  A few observations about the classes/
interfaces on the previous slide: 
q  They are related, so it makes sense to group them 

together 
q  Somebody else may have created a Shape or 

Rectangle class – name conflicts (e.g. with 
java.awt.Rectangle) 

q  Classes within a package can be allowed to have 
unrestricted access to one another yet still restrict 
access outside the package. 

Java packages 

n  Package:  a named collection of related 
classes that are grouped in a directory (the 
name of the directory is the same as the 
name of the package). 

Creating a Java Package 

package shapes; 
public class Rectangle extends Shape 
{ 
  double width, height; 
  public Rectangle(int x, int y, 
             double h, double w ) { 
    super(x, y); 
    width = w; 
    height = h; 
  } 
} 

Rectangle.java 
package shapes; 
public abstract class Shape { 
  int x,y; 
  public Shape(int x, int y){ 
    this.x = x; 
    this.y = y; 
  } 
} 

Shape.java 

package shapes; 
public class Circle extends Shape { 
  double radius; 
  public Circle(int x, int y, double r) { 
    super(x, y); 
    radius = r; 
  } 
} 

Circle.java 
n  A package defines a namespace 
n  If you do not use a package statement, your class or 

interface ends up in the default package, which is a 
package that has no name. 

package shapes; 
public abstract class Shape { 
  int x,y; 
  public Shape(int x, int y){ 
    this.x = x; 
    this.y = y; 
  } 
} 

Shape.java 
put the package statement in all the Java 
files you intend to include in your package. 
 
needs to be the first statement in the file 
(except for comments) 

Using packages 

n  Only public package members are accessible outside the 
package in which they are defined. To use a public 
package member (class, interface) from outside its 
package, you must either: 
q   Refer to the member by its long (disambiguated) name. 

n  java.awt.Rectangle rectangle = new java.awt.Rectangle(); 

q   Import the member's entire package (not recommended). 
n  import java.awt.*; 

 Rectangle rectangle = new Rectangle(); 

q   Import the package member (recommended). 
n  import java.awt.Rectangle; 

 Rectangle rectangle = new Rectangle(); 

Package naming 

n  Package naming convention 
q  The name is lower case so it isn’t confused with a 

type or interface 
q  All official Java packages start with java or javax. 



4/27/13	  

4	  

Summary 

n  Packages: 
q  Group together related Java types 
q  Help avoid name conflicts 
q  Provide access control 

n  For more information:  
 http://docs.oracle.com/javase/tutorial/java/package/index.html 

Exceptions revisited 

n  Until now you only used predefined Java 
exceptions. 

n  You can write your own! 
n  Why would you want to do that? 

Savitch Chapter 9 

Example 
public class DivideByZero Exception extends Exception { 

   public DivideByZeroException() { 
      super(“Divide by zero”); 

   } 

   public DivideByZeroException(String message) { 

      super(message); 

   } 
} 


