
11/16/2016

1

Java Iterators

Motivation

 We often want to access every item in a collection

of items

 We call this traversing or iterating

 Example: array

for (int i = 0; i < array.length; i++)

/* do something with array[i] */

 Easy because we know exactly how an array works!

11/16/2016

2

Motivation

 What if we want to traverse an arbitrary

collection of objects?

 Its underlying implementation may not be known

to us

 Java provides an interface for stepping

through all elements in any collection, called

an iterator

Iterating through an ArrayList

 Iterating through an ArrayList of Strings:
for (int i = 0; i < list.size(); i++) {

String s = list.get(i);

//do something with s

}

 Alternative:
Iterator<String> itr = list.iterator();

while (itr.hasNext()) {

String s = itr.next();

}

This syntax of iteration is generic and applies to any Java

class that implements the Iterator interface.

11/16/2016

3

Iterating through an ArrayList

 Iterating through an ArrayList of Strings:
for (int i = 0; i < list.size(); i++) {

String s = list.get(i);

//do something with s

}

 Alternative:
Iterator<String> itr = list.iterator();

while (itr.hasNext()) {

String s = itr.next();

}

Advantage of the alternative: the code will work even if we

decide to store the data in a different data structure (as long

as it provides an iterator)

The Java Iterator Interface

 Iterator<T>: a generic interface with the following
methods
 public boolean hasNext();

returns true if there are more elements to iterate over

 public T next();

returns the next element

 public void remove();

removes the last element returned by the iterator
(optional operation)

 It is in the java.util package

 Which Java class that you know implement this interface?

11/16/2016

4

The Java Iterator Interface

 public boolean hasNext();

returns true if there are more elements to iterate over

 public T next();

returns the next element

throws a NoSuchElement exception if a next element
does not exist

 public void remove();

removes the last element returned by the iterator
optional operation: if you choose not to implement it,
the method needs to throw an
UnsupportedOperationException

The Java Iterator Interface
public interface Iterator<E> {

/** Returns the next element. Throws a NoSuchElementException

if there is no next element. **/

public E next();

/** Returns true if there is a next element to return. */

public boolean hasNext();

/** Removes the last element that was returned by next.

Throws an UnsupportedOperationException if the remove method

is not supported by this Iterator. Throws an

IllegalStateException if the next method has not yet been

called or if the remove method has already been called after

the last call to the next method. */

public void remove();

}

11/16/2016

5

Using an iterator

ArrayIterator<Integer> itr = new

ArrayIterator<Integer>(array);

while (itr.hasNext()){

Integer element = itr.next();

}

Example: an array iterator
public class ArrayIterator<T> implements Iterator<T>{

private int current;

private T[] array;

public ArrayIterator (T [] array){

this.array = array;

this.current = 0;

}

public boolean hasNext(){

return (current < array.length);

}

public T next(){

if (!hasNext())

throw new NoSuchElementException();

current++;

return array[current - 1];

}

}

11/16/2016

6

The Iterable interface

Given an ArrayList we can traverse it using an iterator:

Iterator<String> itr = list.iterator();

while (itr.hasNext()) {

String s = itr.next();

}

Or using the foreach form of the for loop:

for (String s : list) {

//do something with s

}

The latter is possible because an ArrayList is iterable.

The Iterable interface

 The Java API has a generic interface called
Iterable<T> that allows an object to be the

target of a “foreach” statement
 public Iterator<T> iterator();

returns an iterator

 Why do we need Iterable?

 An Iterator can only be used once, Iterables can

be the subject of “foreach” multiple times.

11/16/2016

7

public class MyArrayList implements Iterable {

private Object [] array;

// not shown: constructors and add/remove etc.

public Iterator iterator() {

Iterator itr = new ArrayIterator();

return itr; }

private class ArrayIterator implements Iterator {

int current;

public ArrayIterator (){

this.current = 0;

}

public boolean hasNext(){

return (current < array.length);

}

public Object next() {

if (!hasNext())

throw new NoSuchElementException();

current++;

return array[current - 1];

}

}

} Note the use of inner classes

Inner classes

 Inner class: defined inside another class

 If declared private it can’t be used by other classes

 The methods of the inner and outer classes have access

to each other’s methods and instance variables, even if

declared private.

11/16/2016

8

Why use Iterators?

 Traversing through the elements of a collection

is very common in programming, and iterators

provide a uniform way of doing so.

 Advantage? Using an iterator, we don’t need to

know how the data structure is implemented!

