
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Introduction to Methods and
Interfaces

CS1: Java Programming
Colorado State University

Kris Brown, Wim Bohm and Ben Say

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Methods - motivation
● We want to write a program that manipulates

areas of certain 2D shapes
– rectangles, squares
– circles, and spheres

● We do not want to write the expression for these
areas every time we need to compute one
– Similarly, we do not want to write one monster main

method to do all the work!
– We want to divide and conquer: separate logical

groups of statements together in one construct

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Methods
● A method allows us to group a set of

statements together into a logical operation
● There are two aspects to methods:

– The method definition
● A method is a collection of statements that are

grouped together to perform an operation
– The method call

● Another method can now use the defined method to
perform the operation

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Method definition
A method is a collection of statements that are grouped
together to perform an operation. Defining a method:

4

modifier return method formal parameters
value type name

public int areaRec (int length, int width) {
// compute area of Rectangle
int area = length * width;
return area;

}

method body, ending with
return value;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Calling a Method
A method is a called in another piece of code (main
or another method). Calling a method:

5

// definition
public int areaRec(int length, int width){

// compute area of Rectangle
int area = length * width;
return area;

}

method actual parameters
name

int area = areaRec (5, 7)

The Method signature is the combination of
the method name and the formal parameter list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Method call: parameter passing

● When a method is called, the values of the
actual parameters of the caller are passed
(copied) to the formal parameters of the
definition.

– areaRec(5, 7) (in our example)
passes 5 to length
and 7 to width

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Method return
● A method may return a value.
● The returnValueType is the data type of the value

the method returns. If the method does not return a
value, the returnValueType is the keyword void.
– For example, the returnValueType in the main method is

void.
● When a method call is finished it returns the

returnValue to the caller. In our example code int
area = areaRec(5,7)

areaRec(5, 7) returns 35

Let’s go check out the code . . .
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Call Stack
In our example code
main called doRectangularShapes()

and
doRectangularShapes called areaRec(9,5)

When our program gets executed, a run time
stack allows records called stack-frames to
be stacked up and removed, thereby keeping
track of the call history.

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

main starts

9

main
args: ….

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

main calls doRectangularShapes()

10

main
args: ….

doRectangularShapes
area:
volume:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

doRectangularShapes calls areaRec(9,5)

11

main
args: ….

doRectangularShapes
area:

areaRec
length: 9
width: 5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

areaRec(9,5) returns 45
doRectangularShapes prints

12

main
args: ….

doRectangularShapes
area: 45 output:

9 by 5 rectangle has area 45

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

doRectangularShapes calls areaRec(12)

13

main
args: ….

doRectangularShapes
area: 45

areaRec
length:
width: 12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

areaRec calls areaRec(12,12)

14

main
args: ….

doRectangularShapes
area: 45

areaRec
length:
width: 12

areaRec
length: 12
width: 12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

areaRec(12,12) returns 144
areaRec(12) returns 144

doRectangularShapes prints

15

main
args: ….

doRectangularShapes
area: 144 output:

square with width 12 has area 144

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

doRectangularShapes returns

16

main
args: ….

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Your turn!

● Read the program and trace what happens
next

● Draw the run time stack with its stack
frames for all the call / return events

17

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Pass by Value
The call

volumeBlck(10,12,6)
in

doRectangularShapes()

passes the integer values 10, 12, and 6 to volumeBlck.

This will become relevant later in the course

18

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Overloading
Notice that there are e.g. two methods volumeBlck, with two different
method signatures:
public int volumeBlck(int length, int width, int height)
and
public static int volumeBlck(int width)

We call this method overloading. A call will check the number and
types of the parameters and select the method with the matching
method signature.

E.g. volumeBlck(11) will select
public static int volumeBlck(int width)

19

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Method Abstraction
You can think of the method body as a black box
that contains the detailed implementation for the
method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Benefits of Methods
• Write a method once and reuse it anywhere.

• Hide the implementation from the user.

• Reduce complexity (e.g. of main), therby
increasing the readability of your program.

• Simplify maintenance: if the method needs
to change, you only change it in one place.
(and the user does not need to know about it)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Your Turn!
Write two methods that will calculate the perimeter of a
rectangle and of a square

public int perimRec(int length, int width)

and
public int perimRec(int width)

22

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Introduction to
Interfaces

23

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Interfaces - motivation

● Consider the task of writing classes to represent 2D
shapes such as Ellipse, Circle, Rectangle
and Square. There are certain attributes or operations
that are common to all shapes: e.g. their area

● Idea of interface: contract:
"I'm certified as a 2D shape. That means you can be
sure that my area can be computed.”

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Interfaces
■ interface: A list of methods that a class promises to

implement.
█ Only method stubs (method without a body) and constant

declarations in the interface, e.g.
public double PI = 3.14159;
public int areaRec(int length, int width);

█ A class can implement an interface
■ A rectangle has an area that can be computed by the

method AreaRec
■ If a class implements an interface, it must have methods

for all methods stubs in the interface.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Implementing an interface
■ A class can declare that it implements an interface:

public class <name> implements <interface name> {
...

}
● This means the class needs to contain an

implementation for each of the methods in
that interface.

(Otherwise, the class will fail to compile.)

Let’s go look at some code . . .

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Your Turn!
You wrote two methods that calculate the perimeter of a
rectangle and of a square

public int perimRec(int length, int width)

and
public int perimRec(int width)

How does the Interface now change?

27

