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Methods - motivation
● We want to write a program that manipulates 

areas of certain 2D shapes
– rectangles, squares
– circles, and spheres 

● We do not want to write the expression for these 
areas every time we need to compute one  
– Similarly, we do not want to write one monster main  

method to do all the work!
– We want to divide and conquer: separate logical 

groups of statements together in one construct
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Methods
● A method allows us to group a set of 

statements together into a logical  operation 
● There are two aspects to methods:

– The method definition
● A method is a collection of statements that are 

grouped together to perform an operation
– The method call

● Another method can now use the defined method to 
perform the operation
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Method definition
A method is a collection of statements that are grouped 
together to perform an operation.   Defining a method:
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modifier return         method     formal  parameters
value type       name

public int areaRec (int length, int width)  {
// compute area of Rectangle
int area = length * width;
return area;

}

method body, ending with 
return value;
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Calling a Method
A method is a called in another piece of code (main 
or another method). Calling a method:
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// definition
public int areaRec(int length, int width){

// compute area of Rectangle
int area = length * width;
return area;

}

method     actual parameters
name

int area = areaRec (5, 7)

The Method signature is the combination of  
the method name  and the formal parameter list.
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Method call: parameter passing

● When a method is called, the values of the 
actual parameters of the caller are passed 
(copied) to the formal parameters of the 
definition. 

– areaRec(5, 7)    (in our example)
passes 5 to  length
and 7 to width
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Method return
● A method may return a value. 
● The returnValueType is the data type of the value 

the method returns. If the method does not return a 
value, the returnValueType is the keyword void. 
– For example, the returnValueType in the main method is 

void.
● When a method call is finished it returns the 

returnValue to the caller. In our example code int
area = areaRec(5,7)

areaRec(5, 7) returns 35

Let’s go check out the code . . .
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Call Stack
In our example code 
main called doRectangularShapes()

and
doRectangularShapes called areaRec(9,5)

When our program gets executed, a run time  
stack allows records called stack-frames to 
be stacked up and removed, thereby keeping 
track of the call history.
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main starts

9

main
args:  ….
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main calls doRectangularShapes()
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main
args:  ….

doRectangularShapes
area:
volume:  
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doRectangularShapes calls areaRec(9,5)
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main
args:  ….

doRectangularShapes
area:

areaRec
length: 9
width: 5
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areaRec(9,5) returns 45
doRectangularShapes prints

12

main
args:  ….

doRectangularShapes
area:  45 output:

9 by 5 rectangle has area 45
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doRectangularShapes calls areaRec(12)
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main
args:  ….

doRectangularShapes
area: 45 

areaRec
length: 
width: 12
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areaRec calls areaRec(12,12)
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main
args:  ….

doRectangularShapes
area: 45 

areaRec
length: 
width: 12

areaRec
length: 12
width:  12
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areaRec(12,12) returns 144
areaRec(12) returns 144

doRectangularShapes prints

15

main
args:  ….

doRectangularShapes
area:  144 output:

square with width 12 has area 144
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doRectangularShapes returns

16

main
args:  ….
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Your turn!

● Read the program and trace what happens 
next

● Draw the run time stack with its stack 
frames for all the call / return events
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Pass by Value
The  call

volumeBlck(10,12,6)
in

doRectangularShapes()

passes the integer values 10, 12, and 6 to volumeBlck.

This will become relevant later in the course
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Overloading
Notice that there are e.g. two methods volumeBlck, with two different 
method signatures:
public int volumeBlck(int length, int width, int height)
and
public static int volumeBlck(int width)

We  call this method overloading. A call will check the number and 
types of the parameters and select the method with the matching 
method signature. 

E.g.  volumeBlck(11) will select
public static int volumeBlck(int width)
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Method Abstraction
You can think of the method body as a black box 
that contains the detailed implementation for the 
method.
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Benefits of Methods
• Write a method once and reuse it anywhere.

• Hide the implementation from the user.

• Reduce complexity (e.g. of main), therby
increasing the readability of your program.

• Simplify maintenance: if the method needs 
to change, you only change it in one place.
(and the user does not need to know about it)
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Your Turn!
Write two methods that will calculate the perimeter of a 
rectangle and of a square 

public int perimRec(int length, int width)

and
public int perimRec(int width)
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Introduction to 
Interfaces
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Interfaces - motivation

● Consider the task of writing classes to represent 2D 
shapes such as Ellipse, Circle,  Rectangle 
and Square. There are certain attributes or operations 
that are common to all shapes: e.g. their area

● Idea of interface: contract:
"I'm certified as a 2D shape.  That means you can be 
sure that my area can be computed.”
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Interfaces
■ interface: A list of methods that a class promises to 

implement.
█ Only method stubs (method without a body) and constant 

declarations in the interface, e.g.
public double PI = 3.14159;
public int areaRec(int length, int width);

█ A class can implement an interface 
■ A rectangle has an area that can be computed by the 

method AreaRec
■ If a class implements an interface, it must have methods   

for all methods stubs in the interface. 
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Implementing an interface
■ A class can declare that it implements an interface:

public class <name> implements <interface name> {
...

}
● This means the class needs to contain an 

implementation for each of the methods in 
that interface.

(Otherwise, the class will fail to compile.)

Let’s go look at some code . . .
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Your Turn!
You wrote two methods that calculate the perimeter of a 
rectangle and of a square 

public int perimRec(int length, int width)

and
public int perimRec(int width)

How does the Interface now change?
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