Priority Queues

- Characteristics
 - Items are associated with a Comparable value: priority
 - Provide access to one element at a time - the one with the highest priority

- offer(E e) and add(E e) – inserts the element into the priority queue based on the priority order
- remove() and poll() – removes the head of the queue (which is the highest priority) and returns it

PQ – Reference-based Implementation

- Reference-based implementation
 - Sorted in descending order
 - Highest priority value is at the beginning of the linked list
 - remove() returns the item that pqHead references and changes pqHead to reference the next item.
 - offer(E e) must traverse the list to find the correct position for insertion.
Complete tree definition

- Complete binary tree of height h
 - zero or more rightmost leaves not present at level h
- A binary tree T of height h is complete if
 - All nodes at level h − 2 and above have two children each, and
 - When a node at level h − 1 has children, all nodes to its left at the same level have two children each, and
 - When a node at level h − 1 has one child, it is a left child
 - So the leaves at level h go from left to right

Complete Binary Tree

Level-by-level numbering of a complete binary tree, NOTE: 0 based:

```
  0: Jane
  1: Bob
  2: Tom
  3: Alan
  4: Ellen
  5: Nancy
```

What is the parent child index relationship:

- left child: at 2*i + 1
- right child: at 2*(i+1)
- parent: at (i-1)/2

So we can store a complete binary tree in an array!!

Heap - Definition

- A maximum heap (maxheap) is a complete binary tree that satisfies the following:
 - It is a leaf, or it has the heap property:
 - Its root contains a key greater or equal to the keys of its children
 - Its left and right sub-trees are also maxheaps
 - A minheap has the root less or equal children, and left and right sub trees are also minheaps
maxHeap Property Implications

- Implications of the heap property:
 - The root holds the maximum value (global property)
 - Values in descending order on every path from root to leaf

- A Heap is NOT a binary search tree, as in a BST the nodes in the right sub tree of the root are larger than the root

Examples

Array(List) Implementation
Array(List) Implementation

- **Traversal:**
 - Root at position 0
 - Left child of position i at position \(2i+1\)
 - Right child of position i at position \(2(i+1)\)
 - Parent of position i at position \((i-1)/2\)
 (int arithmetic truncates)

Heap Operations - **heapInsert**

- **Step 1:** put a new value into first open position
 (maintaining completeness), i.e. at the end
- but now we potentially violated the heap property, so:
- **Step 2:** bubble values up
 - Re-enforcing the heap property
 - Swap with parent, if new value > parent, until in the right place.
 - The heap property holds for the tree below the new value, when swapping up

Swapping up

- Swapping up enforces heap property for sub tree below the new, inserted value:
- if \((\text{new} > x)\) swap\((x,\text{new})\)
 - \(x>y\), therefore \(\text{new} > y\)
Insertion into a heap (Insert 15)

Insert 15
bubble up

Insertion into a heap (Insert 15)

bubble up

Insertion into a heap (Insert 15)
Heap operations – heapDelete

- **Step 1**: remove value at root (Why?)
- **Step 2**: substitute with rightmost leaf of bottom level (Why?)
- **Step 3**: bubble down
 - Swap with maximum child as necessary, until in place
 - each bubble down restores the heap property for the max child
 - this is called HEAPIFY

Swapping down

- Swapping down enforces heap property at the swap location:
 - new\(\rightarrow x\) and \(y<x\): swap\((x,\text{new})\)
 - new\(x\) and \(y<x\): swap\((x,\text{new})\)
 - \(x>y\) and \(x>\text{new}\)

Deletion from a heap

- **Delete 10**
- **Place last node in root**
bubble down
heapify
draw the heap

delete again
draw the heap
HeapSort

- Algorithm
 - Insert all elements (one at a time) to a heap
 - Iteratively delete them
 - Removes minimum/maximum value at each step

HeapSort

- Alternative method (in-place):
 - buildHeap: create a heap out of the input array:
 - Consider the input array as a complete binary tree
 - Create a heap by iteratively expanding the portion of the tree that is a heap
 - Leaves are already heaps
 - Start at last internal node
 - Go backwards calling heapify with each internal node
 - Iteratively swap the root item with last item in unsorted portion and rebuild

Building the heap

buildHeap(n){
 for (i = (n-2)/2 down to 0)
 //pre: the tree rooted at index is a semihap
 //i.e., the sub trees are heaps
 heapify(i); // bubble down
 //post: the tree rooted at index is a heap
}

- WHY start at (n-2)/2?
- WHY go backwards?

- The whole method is called buildHeap
- One bubble down is called heapify
Draw as a Complete Binary Tree:

Repeatedly heapify, starting at last internal node, going backwards.
In place heapsort using an array

- First build a heap out of an input array using `buildHeap()`. See previous slides.
- Then partition the array into two regions; starting with the full heap and an empty sorted and stepwise growing sorted and shrinking heap.

HEAP

```
10 9 7 3 2 6
```

Sorted (Largest elements in array)

```
10 9 7 3 2 6
```

HEAP

```
10 9 6 3 2 5
9 5 6 3 2 10
6 5 2 3 9 10
5 3 2 6 9 10
3 2 5 6 9 10
2 3 5 6 9 10
2 3 5 6 9 10
```

SORTED

```
10 9 6 3 2 5
9 5 6 3 2 10
6 5 2 3 9 10
5 3 2 6 9 10
3 2 5 6 9 10
2 3 5 6 9 10
2 3 5 6 9 10
```