
10/27/2017

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1

Extra: B+ Trees

CS1: Java Programming

Colorado State University

Slides by Wim Bohm and Russ Wakefield

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Motivations

Many times you want to minimize the disk

accesses while doing a search. A binary search tree

allows two keys per node – a B+ tree allows as

many values that will fit on a page.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Differences between BST and B+

B+ is a balanced tree

– Same distance for every path through the tree

– Not true for BST

B+ tree keeps data only in the leaf nodes

– The index nodes are simply for traffic control

– BST has data with the keys

B+ tree has many keys per node

– BST has 1

3

10/27/2017

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Objectives

4

▪ To understand the basic structure of a B+ Tree

▪ Understanding how the way keys are stored allows for efficient searching

▪ To understand the insertion algorithm

▪ To understand the deletion algorithm

▪ To see how rotation minimizes the cost of insertion and deletion algorithms

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

What is a B+ tree?

B+ tree – a dynamic structure that adjusts to changes in the

file gracefully. It is the the most widely used structure

because it adjusts well to changes and supports both

equality and range queries.

It is a balanced tree in which the internal nodes direct the

search and the leaf nodes contain the data entries. The leaf

nodes are organized into a doubly linked list allowing us to

easily traverse the leaf pages in either direction.

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Example of a B+ tree

6

10 15 305 20 25 50 55 60 65 75 80 85 90

75

100 250

100 155 160 250 255 260

25 50

10/27/2017

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Advantages / Disadvanges

Advantage of B+-tree index files:

– automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.

– Reorganization of entire file is not required to maintain
performance.

(Minor) disadvantage of B+-trees:

– extra insertion and deletion overhead, space overhead.

Advantages of B+-trees outweigh disadvantages

– B+-trees are used extensively

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

B+-Tree Index Files (Cont.)

All paths from root to leaf are of the same length

Each node that is not a root or a leaf has between n/2 and n

children.

A leaf node has between (n–1)/2 and n–1 values

Special cases:

– If the root is not a leaf, it has at least 2 children.

– If the root is a leaf (that is, there are no other nodes in the

tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

B+-Tree Node Structure

Typical node

– Ki are the search-key values

– Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

10/27/2017

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Non-Leaf Nodes in B+-Trees

Non leaf nodes form a multi-level sparse index on the leaf nodes. For

a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less than

K1

– For 2  i  n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki

– All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Example of B+-tree

Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

Non-leaf nodes other than root must have between 3 and 5

children ((n/2 and n with n =5).

Root must have at least 2 children.

B+-tree for instructor file (n = 5)

10 15 305 20 25 50 55 60 65 75 80 85 90

75

100 250

100 155 160 250 255 260

25 50

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Observations about B+-trees

Operations (insert, delete) on the tree keep it balanced. LogfN cost

where f=fanout, N = # of leaf pages.

Minimum occupancy of 50% is guaranteed for each node except the

root node if the deletion algorithm we will present is used. (in

practice, deletes just delete the data entry because files usually grow,

not shrink). Each node contains m entries where d <= m <= 2d

entries. d is referred to as the order of the tree.

Search for a record is just a traversal from the root to the appropriate

leaf. This is the height of the tree – because it is balanced is consistent.

Because of the high fan-out, the height of a B+ tree is rarely more than

3 or 4.

10/27/2017

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Queries on B+-Trees

Find record with search-key value V.

1. C=root

2. While C is not a leaf node {

1. Let i be least value such that V  Ki.

2. If no such exists, set C = last non-null pointer in C

3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}

} //Now C is in leaf node containing Ki

3. Let i be least value such that Ki = V

4. If there is such a value i, follow pointer Pi to the desired record.

5. Else no record with search-key value k exists.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Queries on B+-Trees (Cont.)

If there are K search-key values in the file, the height of the tree is no

more than logn/2(K). (n = number of indices / node)

A node is generally the same size as a disk block, typically 4

kilobytes

– and n is typically around 100 (40 bytes per index entry).

With 1 million search key values and n = 100

– at most log50(1,000,000) = 4 nodes are accessed in a lookup.

Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup

– above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insertion Algorithm

Leaf page

full?

Index page

full?

Action

No No Place the record in sorted position in the appropriate leaf

page

Yes No 1. Split the leaf page including the inserted record.

2. Place Middle Key in the index page in sorted order.

3. Left leaf page contains records with keys below the

middle key.

4. Right leaf page contains records with keys equal to or

greater than

the middle key.

Yes Yes 1. Split the leaf page including the inserted record.

2. Records with keys < middle key go to the left leaf page.

3. Records with keys >= middle key go to the right leaf

page.

4. Split the index page.

5. Keys < middle key go to the left index page.

6. Keys > middle key go to the right index page.

7. The middle key goes to the next (higher level) index.

IF the next level index page is full, continue splitting the

index pages.

15

10/27/2017

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insertion

16

13

5 10 20

1* 4* 5* 9* 10* 12* 13* 18* 20*

Examples of insertion with B+ tree with order = 1. Starting

with a tree looking like this:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 28

17

13

5 10 20

1* 4* 5* 9* 10* 12* 13* 18* 20*

Insert 28 into the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 28

18

13

5 10 20

1* 4* 5* 9* 10* 12* 13* 18* 20* 28*

Our first insertion has an index of 28. We look at the leaf node

to see if there is room. Finding an empty slot, we place the

index in node in sorted order.

10/27/2017

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 25

19

13

5 10 20

1* 4* 5* 9* 10* 12* 13* 18* 20* 28*

Insert 25 in the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 25

20

13

5 10 20 25

1* 4* 5* 9* 10* 12* 13* 18* 20* 25* 28*

Our next insertion is at 25. We look at the leaf node it

would go in and find there is no room. We split the

node, and roll the middle value to the index mode

above it.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 8

21

13

5 10 20 25

1* 4* 5* 9* 10* 12* 13* 18* 20* 25* 28*

Insert 8 in the below tree:

10/27/2017

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 8

22

8 13

5 20 25

1* 4* 5* 10* 12* 13* 18* 20* 25* 28*

10

8* 9*

Our next case occurs when we want to add 8. The leaf node is

full, so we split it and attempt to roll the index to the index

node. It is full, so we must split it as well.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 15

23

8 13

5 20 25

1* 4* 5* 10* 12* 13* 18* 20* 25* 28*

10

8* 9*

Insert 15 into the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Insert 15

24

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25

15* 18*

13

20

Our last case occurs when we want to add 15. This is

going to result in the root node being split. The leaf node

is full, as are the two index nodes above it. This gives us:

10/27/2017

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete Algorithm

25

Leaf page less than

1/2?

Index page less

than 1/2?

Action

No No Delete the record from the leaf page. Arrange keys in ascending order to fill

void. If the key of the deleted record appears in the index pages, use the next

key to replace it.

Yes No Combine the leaf page and its sibling. Change the index page to reflect the

change.

Yes Yes 1. Combine the leaf page and its sibling.

2. Adjust the index page to reflect the change.

3. Combine the index page with its sibling

4. Delete entry from parent

Continue combining index pages until you reach a page with thecorrect fill

factor or you reach the root page.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete

26

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25 30

15* 18*

13

20

30*

Let’s take our tree from the insert example with a minor

modification (we have added 30 to give us an index node with

2 indexes in it:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 18

27

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25 30

15* 18*

13

20

30*

Delete 18 from the below tree:

10/27/2017

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 18

28

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25 30

15*

13

20

30*

Our first delete is of 18. Simplest case is that it is not an

index and in a leaf node that deleting it will not take you

below 1/2.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 25

29

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25 30

15*

13

20

30*

Delete 25 from the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 25

30

8

5 15

1* 4* 5* 10* 12* 13* 20* 28*

10

8* 9*

28 30

15*

13

20

30*

Our next delete is similar, except the index appears in a

index node. In that case, the next index replaces the one in

the index node. Let’s delete 25 from the previous slide.

10/27/2017

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 28

31

8

5 15

1* 4* 5* 10* 12* 13* 20* 28*

10

8* 9*

28 30

15*

13

20

30*

Delete 28 from the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 28

32

8

5 15

1* 4* 5* 10* 12* 13* 20*

10

8* 9*

30

15*

13

20

30*

Our next case takes the node below d. Let’s delete 28. For

this one we combine the leaf page (in our case it is empty)

with its sibling and update the index appropriately. That

gives us:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 30

33

8

5 15

1* 4* 5* 10* 12* 13* 20*

10

8* 9*

30

15*

13

20

30*

Delete 30 from the below tree:

10/27/2017

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 30

34

8 13

5 15 20

1* 4* 5* 10* 12* 13*

10

8* 9* 15* 20*

Next we delete 30. This takes us below d for the index. We

combine the indexes, which has the effect of taking the index

above below d. This continues to the root.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 30

35

Woah. That seemed like magic. What process got us to

that?

Ok – let’s go through it. When we deleted 30, which took

the data entry node that 30 was in below d. Now we have to

merge with the sibling. When we merge – it’s to the sibling

on the left, which means pointer in the index above is no

longer valid. We remove it, (which leaves it less than d),

pull down the index from above and merge the index node

with its sibling.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 30

36

8

5 15 20

1* 4* 5* 10* 12* 13* 20*

10

8* 9* 15*

13

10/27/2017

13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 30

37

8 13

5 15 20

1* 4* 5* 10* 12* 13*

10

8* 9* 15* 20*

Repeating the process gets us back to

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 5

38

8 13

5 15 20

1* 4* 5* 10* 12* 13*

10

8* 9* 15* 20*

Delete 5 from the below tree:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 5

39

Our last example deletes 5. This takes the node and the index

above it below d. We remove the leaf node and combine the

index with its neighbor.

13

15 20

1* 4* 10* 12* 13*

8 10

8* 9* 15* 20*

10/27/2017

14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Rotation

40

It is also possible to rebalance a tree to reduce the number of

splits – called rotation. If you are trying to insert, and a leaf

page is full, but its sibling isn’t – you can move an index to

a sibling and avoid splitting. Let’s go back to a tree from

our insert example:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Add 3

41

8

5 15

1* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25

15* 18*

13

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Add 3 (Rotation)

42

8

4 15

1* 3* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25

15* 18*

13

20

We want to add 3 – but in this case we check the sibling to see if

it has room. It does, so we move a record to it adjusting the

index. Now we have :

10/27/2017

15

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 13 (Rotation)

43

8

4 15

1* 3* 4* 5* 10* 12* 13* 20* 25* 28*

10

8* 9*

25

15* 18*

13

20

The same concept works with deletes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Delete 13 (Rotation)

44

8

4 18

1* 3* 4* 5* 10* 12* 15* 20* 25* 28*

10

8* 9*

25

18*

15

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Bulk Loading of a B+ Tree
If we have a large collection of records, and we want

to create a B+ tree on some field, doing so by

repeatedly inserting records is very slow.

Bulk Loading can be done much more efficiently.

Initialization: Sort all data entries, insert pointer to

first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

10/27/2017

16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Bulk Loading (Contd.)

Index entries for leaf

pages always entered

into right-most index

page just above leaf

level. When this fills

up, it splits. (Split

may go up right-most

path to the root.)

Much faster than

repeated inserts.

3* 4* 6* 9* 10*11* 12*13* 20*22* 23*31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10*11* 12*13* 20*22* 23*31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Summary of Bulk Loading

Option 1: multiple inserts.

– Slow.

– Does not give sequential storage of leaves.

Option 2: Bulk Loading

– Has advantages for concurrency control.

– Fewer I/Os during build.

– Leaves will be stored sequentially (and linked,

of course).

– Can control “fill factor” on pages.

