
10/11/2017

1

Supplemental Materials:

Grammars, Parsing, and

Expressions

CS2: Data Structures and Algorithms

Colorado State University

Original slides by Chris Wilcox,

Updated by Russ Wakefield and Wim Bohm

Topics

Grammars

Production Rules

Prefix, Postfix, and Infix

Tokenizing and Parsing

Expression Trees and Conversion

Expression Evaluation

CS165: Data Structures and Algorithms –

Spring Semester 2017 2

Grammars

Programming languages are defined using

grammars with specific properties.

Grammars define programming languages

using a set of symbols and production rules.

Grammars simplify the interpretation of

programs by compilers and other tools.

Grammars avoid the ambiguities associated

with natural languages.
CS165: Data Structures and Algorithms –

Spring Semester 2017 3

10/11/2017

2

Definitions

Grammar: the system and structure of a language.

Syntax: A set of rules for arranging and combining

language elements (form):

– For example, the syntax of an assignment statement is

variable = expression;

Semantics: The meaning of the language elements

and constructs (function):

– The semantics of an assignment statement is evaluate the

expression and store the result in the variable.

CS165: Data Structures and Algorithms –

Spring Semester 2017 4

Ambiguity

Natural Language:

“British left waffles on Falklands.”

Did the British leave waffles behind, or is there waffling

by the British political left wing?

“Brave men run in my family.”

Do the brave men in his family run, or are there many

brave men in his ancestry?

CS165: Data Structures and Algorithms –

Spring Semester 2017 5

Language and Grammar
A language is a set of sentences: strings of

terminals -the words while, (, x < ….

Grammar defines these, using productions

LHS ::= RHS

Read this as the LHS is defined by RHS

6
CS165: Data Structures and Algorithms –

Spring Semester 2017

10/11/2017

3

Language and Grammar
LHS ::= RHS

RHS is a string of terminals and non-

terminals

- Terminals are the words of the language

– Non-terminals are concepts in the language

– Non-terminals include java statements

A sequence of productions creates a

sentence when no non-terminal is left

7
CS165: Data Structures and Algorithms –

Spring Semester 2017

Production Rules (Example)

Non-terminals produce strings of terminals. For

example, non-terminal S produces certain valid

strings of a’s and b’s.

– S ::= aSb

– S ::= ba

Valid:

ba, abab, aababb, aaababbb, ... or anbabn | n ≥ 0)

Invalid:

a, b, ab, abb, aba, bab, ... and everything else!
CS165: Data Structures and Algorithms –

Spring Semester 2017 8

Example productions

S ::= aSb or

S ::= ba

S ba

S aSb abab

S aSb aaSbb aababb

S anbabn | n ≥ 0

9
CS165: Data Structures and Algorithms –

Spring Semester 2017

10/11/2017

4

Production Rules and Symbols

::= means equivalence, is defined by

<symbol> means needs further expansion

Concatenation

– x y denotes x followed by y

Choice

– x | y | z means one of x or y or z

Repitition

– * means 0 or more occurences

– + means 1 or more occurences

Block Structure: recursive definition

– A statement can have statements inside it

CS165: Data Structures and Algorithms –

Spring Semester 2017 10

Production Rules

(Java Identifiers)

CS165: Data Structures and Algorithms –

Spring Semester 2017 11

<identifier> ::= <initial> (<initial> | <digits>)*

<initial> ::= <letter> | _ | $

<letter> ::= a | b | c | ... z | A | B | C | ... Z

<digit> ::= 0 | 1 | 2 | ... 9

Valid:

myInt0, _myChar1, $myFloat2, _$_, _12345, ...

Invalid:

123456, 123myIdent, %Hello, my-Integer, ...

<Statement> ::= <Assignment> | <ForStatement> | …

<ForStatement> ::=

for (<ForInit> ; <Expression> ; <ForUpdate>)

<Statement>

<Assignment> ::=

<LeftHand> <AssignmentOp> <Expression>

<AssignmentOp> ::=

= | *= | /= | %= | += …….

Production Rules (Other Java)

CS165: Data Structures and Algorithms –

Spring Semester 2017 12

10/11/2017

5

An alternative definition mechanism

– Simpler because non-recursive

Syntax used to define strings, for example

by the Linux ‘grep’ command.

Many other usages, for example Java String

split and many other methods accept them.

Two ways to interpret, 1) as a pattern

matcher, or 2) as a specification of a syntax.

Regular Expressions

CS165: Data Structures and Algorithms –

Spring Semester 2017 13

Regex Cheatsheet (1)

CS165: Data Structures and Algorithms –

Spring Semester 2017 14

Symbol Meaning Example

* Match zero, one or more of previous Ah* matches "A", "Ah", "Ahhhhh"

? Match zero or one of previous Ah? matches "A" or "Ah"

+ Match one or more of previous Ah+ matches "Ah", "Ahh" not "A"

\ Used to escape a special character Hungry\? matches "Hungry?"

. Wildcard, matches any character do.* matches "dog", "door", "dot"

[] Matches a range of characters
[a-zA-Z] matches ASCII a-z or A-Z

[^0-9] matches any except 0-9.

Regex Cheatsheet (2)

CS165: Data Structures and Algorithms –

Spring Semester 2017 15

Symbol Meaning Example

|
Matches previous or next

character or group

(Mon)|(Tues)day matches "Monday" or

"Tuesday"

{ }
Matches a specified number

of occurrences of previous

[0-9]{3} matches "315" but not "31"

[0-9]{2,4} matches "12", "123", and "1234"

^ Matches beginning of a string.
^http matches strings that begin with http,

such as a url.

$ Matches the end of a string. ing$ matches "exciting" but not "ingenious"

10/11/2017

6

[0-9a-f]+ matches hexadecimal, e.g. ab,

1234, cdef, a0f6, 66cd, ffff, 456affff.

[0-9a-zA-Z] matches alphanumeric strings

with a mixture of digits and letters

[0-9]{3}-[0-9]{2}-[0-9]{4} matches social

security numbers, e.g. 166-11-4433

[a-z]+@([a-z]+\.)+(edu|com) matches emails,

e.g. whoever@gmail.com

Regex Examples (1)

CS165: Data Structures and Algorithms –

Spring Semester 2017 16

b[aeiou]+t matches bat, bet, but, and also

boot, beet, beat,etc.

[$_A-Za-z][$_A-Za-z0-9]* matches Java

identifiers, e.g. x, myInteger0, _ident, a01

[A-Z][a-z]* matches any capitalized word,

i.e. a capital followed by lowercase letters

.u.u.u. uses the wildcard to match any letter,

e.g. cumulus

Regex Examples (2)

CS165: Data Structures and Algorithms –

Spring Semester 2017 17

Infix Expressions

Infix notation places each operator between

two operands for binary operators:

This is the customary way we write math

formulas in programming languages.

However, we need to specify an order of

evaluation in order to get the correct answer.

CS165: Data Structures and Algorithms –

Spring Semester 2017 18

A * x * x + B * x + C; // quadratic equation

10/11/2017

7

The evaluation order you may have learned

in math class is named PEMDAS:

Also need to account for unary, logical and

relational operators, pre/post increment, etc.

Java has a similar but not identical order of

evaluation, as shown on the next slide.

parentheses → exponents → multiplication

→ division → addition → subtraction

Evaluation Order

19
CS165: Data Structures and Algorithms –

Spring Semester 2017

Reminder: Java Precedence
parentheses ()

unary ++ -- + - ~ !

multiplicative * / %

additive + -

shift << >>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

20
CS165: Data Structures and Algorithms –

Spring Semester 2017

Associativity

Operators with same precedence:

* /

and

+ -

are evaluated left to right: 2-3-4 = (2-3)-4

21
CS165: Data Structures and Algorithms –

Spring Semester 2017

10/11/2017

8

Infix Example
How a Java infix expression is evaluated,

parentheses added to show association.

z = (y * (6 / x) + (w * 4 / v)) – 2;

z = (y * (6 / x) + (w * 4 / v)) – 2; // parentheses

z = (y * (6 / x)) + (w * 4 / v) – 2; // multiplication (L-R)

z = (y * (6 / x)) + ((w * 4) / v) – 2; // multiplication (L-R)

z = (y * (6 / x)) + ((w * 4) / v) – 2; // division (L-R)

z = ((y * (6 / x)) + ((w * 4) / v))) – 2; // addition (L-R)

z = ((y * (6 / x)) + ((w * 4) / v))) – 2; // subtraction (L-R)

z = ((y * (6 / x)) + ((w * 4) / v))) – 2; // assignment

CS165: Data Structures and Algorithms –

Spring Semester 2017 22

Postfix Expressions

Postfix notation places the operator after two

operands for binary operators:

Also called reverse polish notation, just like a

vintage Hewlett-Packard calculator!

No need for parentheses, because the

evaluation order is unambiguous.
CS165: Data Structures and Algorithms –

Spring Semester 2017 23

A * x * x + B * x + C // infix version

A x * x * B x * + C + // postfix version

Postfix Example
Evaluating the same expression as postfix, must

search left to right for operators:

(y * (6 / x) + (w * 4 / v)) – 2 // original infix

y 6 x / * w 4 * v / + 2 - // postfix translation

(y (6 x /) *) w 4 * v / + 2 -

((y (6 x /) *) w 4 * v / + 2 -

(y (6 x /) *) (w 4 *) v / + 2 -

(y (6 x /) *) ((w 4 *) v /) + 2 –

((y (6 x /) *) ((w 4 *) v /) +) 2 -

(((y (6 x /) *) ((w 4 *) v /) +) 2 -)
CS165: Data Structures and Algorithms –

Spring Semester 2017 24

10/11/2017

9

Calculator

Buttons you would push on a normal

calculator: 12, *, 10, =, +, (, 6, *, 6,) // = 156

Buttons you would push on my vintage

calculator: 12↵, 10, *, 6 ↵, 6, *, + // = 156

Note the implicit use of a stack (↵), and the

fact that no parentheses are needed.

CS165: Data Structures and Algorithms –

Spring Semester 2017 25

(12 * 10) + (6 * 6)

Calculator

CS165: Data Structures and Algorithms –

Spring Semester 2017 26

Prefix Expressions

Prefix notation places the operator before

two operands for binary operators:

Also called polish notation, because first

documented by polish mathematician.

No need for parentheses, because the

evaluation order is unambiguous.
CS165: Data Structures and Algorithms –

Spring Semester 2017 27

A * x * x + B * x + C // infix version

+ + * * A x x * B x C // prefix version

10/11/2017

10

Formatting

Free-format language: program is a sequence of

tokens, position of tokens unimportant (C, Java)

Fixed-format language: indentation and position

of tokens on page is significant (Python)

Case-sensitive languages (C, C++, Java):

– myInteger differs from MyInteger and MYINTEGER

Case-insensitive languages (Fortran, Pascal):

– identifiers and reserved words!

CS165: Data Structures and Algorithms –

Spring Semester 2017 28

Tokens

Tokens are the building blocks of a

programming language:

– keywords, identifiers, numbers, punctuation

The initial phase of the compiler splits up the

character stream into a sequence of tokens.

Tokens themselves are defined by regular

expressions

CS165: Data Structures and Algorithms –

Spring Semester 2017 29

Expression Trees

Parsing decomposes source code and builds a

representation that represents its structure.

Parsing generally results in a data structure such

as a tree:

CS165: Data Structures and Algorithms –

Spring Semester 2017 30

(A * x * x) + (B * x) + C

A x * x * B x * + C +

// postfix version

+

C+

**
* xBx

xA

10/11/2017

11

Tokenizing

Think about some of the difficulties with respect

to tokenizing:

– How do identify reserved word and identifiers?

– How do you extract special characters?

– For example, take the following expression:

– Straightforward parsing with Scanner yields:

CS165: Data Structures and Algorithms –

Spring Semester 2017 31

int y = (A * x * x) + (B * x) + C;

[int, y, =, (,A, *, x, *, x,), +, (,B, *, x), +, C,;]

Infix, Postfix, Prefix Conversion

CS165: Data Structures and Algorithms –

Spring Semester 2017 32

Infix Postfix Prefix Notes

A * B + C / D A B * C D / + + * A B / C D

multiply A and B,

divide C by D,

add the results

A * (B + C) / D A B C + * D / / * A + B C D

add B and C,

multiply by A,

divide by D

A * (B + C / D) A B C D / + * * A + B / C D

divide C by D,

add B,

multiply by A

Expression Trees

CS165: Data Structures and Algorithms –

Spring Semester 2017 33

Infix Postfix Prefix

((A * B) + (C / D)) ((A B *) (C D /) +) (+ (* A B) (/ C D))

((A * (B + C)) / D) ((A (B C +) *) D /) (/ (* A (+ B C)) D)

(A * (B + (C / D))) (A (B (C D /) +) *) (* A (+ B (/ C D)))

10/11/2017

12

What’s Next?

However, we will need stacks, which we have

studied, and trees, which we have not:

Question: Does the Java Collection

framework have support for binary trees? If

not, why not?

Answer: No, you have to build your own

trees using the same techniques as with your

linked list.

CS165: Data Structures and Algorithms –

Spring Semester 2017 34

