
9/21/2017

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
1

Chapter 19 Generics

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
2

Objectives
 To know the benefits of generics (§19.1).

 To use generic classes and interfaces (§19.2).

 To declare generic classes and interfaces (§19.3).

 To understand why generic types can improve reliability and readability
(§19.3).

 To declare and use generic methods and bounded generic types (§19.4).

 To use raw types for backward compatibility (§19.5).

 To know wildcard types and understand why they are necessary (§19.6).

 To convert legacy code using JDK 1.5 generics (§19.7).

 To understand that generic type information is erased by the compiler and
all instances of a generic class share the same runtime class file (§19.8).

 To know certain restrictions on generic types caused by type erasure
(§19.8).

 To design and implement generic matrix classes (§19.9).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
3

Why Do You Get a Warning?

public class ShowUncheckedWarning {

public static void main(String[] args) {

java.util.ArrayList list =

new java.util.ArrayList();

list.add("Java Programming");

}

}

To understand the compile

warning on this line, you need to

learn JDK 1.6 generics.

9/21/2017

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
4

Fix the Warning

public class ShowUncheckedWarning {

public static void main(String[] args) {

java.util.ArrayList<String> list =

new java.util.ArrayList<String>();

list.add("Java Programming");

}

}

No compile warning on this line.

`

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
5

What is Generics?

Generics is the capability to parameterize types.

With this capability, you can define a class or a

method with generic types that can be substituted

using concrete types by the compiler. For example,

you may define a generic stack class that stores the

elements of a generic type. From this generic class,

you may create a stack object for holding strings

and a stack object for holding numbers. Here,

strings and numbers are concrete types that replace

the generic type.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
6

Why Generics?

The key benefit of generics is to enable errors to be

detected at compile time rather than at runtime. A

generic class or method permits you to specify

allowable types of objects that the class or method

may work with. If you attempt to use the class or

method with an incompatible object, a compile

error occurs.

9/21/2017

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

Generic Type

package java.lang;

public interface Comparable {

 public int compareTo(Object o)

}

package java.lang;

public interface Comparable<T> {

 public int compareTo(T o)

}

 (a) Prior to JDK 1.5 (b) JDK 1.5

Generic InstantiationRuntime error

Compile error

Comparable c = new Date();

System.out.println(c.compareTo("red"));

(a) Prior to JDK 1.5

Comparable<Date> c = new Date();

System.out.println(c.compareTo("red"));

(b) JDK 1.5

Improves reliability

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
8

Generic ArrayList in JDK 1.5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
9

No Casting Needed

ArrayList<Double> list = new ArrayList<>();

list.add(5.5); // 5.5 is automatically converted to new Double(5.5)

list.add(3.0); // 3.0 is automatically converted to new Double(3.0)

Double doubleObject = list.get(0); // No casting is needed

double d = list.get(1); // Automatically converted to double

9/21/2017

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
10

Declaring Generic Classes and Interfaces

GenericStack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
11

Generic Methods

public static <E> void print(E[] list) {

for (int i = 0; i < list.length; i++)

System.out.print(list[i] + " ");

System.out.println();

}

public static void print(Object[] list) {

for (int i = 0; i < list.length; i++)

System.out.print(list[i] + " ");

System.out.println();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
12

Bounded Generic Type

public static void main(String[] args) {

Rectangle rectangle = new Rectangle(2, 2);

Circle circle = new Circle (2);

System.out.println("Same area? " + equalArea(rectangle, circle));

}

public static <E extends GeometricObject> boolean

equalArea(E object1, E object2) {

return object1.getArea() == object2.getArea();

}

http://www.cs.armstrong.edu/liang/intro11e/html/GenericStack.html

9/21/2017

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
13

Raw Type and Backward

Compatibility

// raw type

ArrayList list = new ArrayList();

This is roughly equivalent to

ArrayList<Object> list = new ArrayList<Object>();

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

Raw Type is Unsafe

Max.max("Welcome", 23);

// Max.java: Find a maximum object

public class Max {

/** Return the maximum between two objects */

public static Comparable max(Comparable o1, Comparable o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

}

Runtime Error:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
15

Make it Safe

Max.max("Welcome", 23);

// Max1.java: Find a maximum object

public class Max1 {

/** Return the maximum between two objects */

public static <E extends Comparable<E>> E max(E o1, E o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

}

9/21/2017

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
16

Avoiding Unsafe Raw Types

Use

new ArrayList<ConcreteType>()

Instead of

new ArrayList();

RunTestArrayListNew

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
17

Erasure and Restrictions on Generics

Generics are implemented using an approach called

type erasure. The compiler uses the generic type

information to compile the code, but erases it

afterwards. So the generic information is not

available at run time. This approach enables the

generic code to be backward-compatible with the

legacy code that uses raw types.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
18

Compile Time Checking

For example, the compiler checks whether generics

is used correctly for the following code in (a) and

translates it into the equivalent code in (b) for

runtime use. The code in (b) uses the raw type.

ArrayList<String> list = new ArrayList<>();

list.add("Oklahoma");

String state = list.get(0);

(a) (b)

ArrayList list = new ArrayList();

list.add("Oklahoma");

String state = (String)(list.get(0));

http://www.cs.armstrong.edu/liang/intro11e/html/TestArrayListNew.html

9/21/2017

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
19

Important Facts

It is important to note that a generic class is
shared by all its instances regardless of its
actual generic type.

GenericStack<String> stack1 = new GenericStack<>();

GenericStack<Integer> stack2 = new GenericStack<>();

Although GenericStack<String> and
GenericStack<Integer> are two types, but there is
only one class GenericStack loaded into the JVM.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
20

Restrictions on Generics

 Restriction 1: Cannot Create an Instance of a Generic
Type. (i.e., new E()).

 Restriction 2: Generic Array Creation is Not Allowed.
(i.e., new E[100]).

 Restriction 3: A Generic Type Parameter of a Class Is
Not Allowed in a Static Context.

 Restriction 4: Exception Classes Cannot be Generic.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
21

Designing Generic Matrix Classes

Objective: This example gives a generic class for

matrix arithmetic. This class implements matrix

addition and multiplication common for all types of

matrices.

GenericMatrix

http://www.cs.armstrong.edu/liang/intro11e/html/GenericMatrix.html

9/21/2017

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
22

UML Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
23

Objective: This example gives two programs that

utilize the GenericMatrix class for integer matrix

arithmetic and rational matrix arithmetic.

Source Code

RunTestIntegerMatrixIntegerMatrix

RunTestRationalMatrixRationalMatrix

http://www.cs.armstrong.edu/liang/intro11e/html/TestIntegerMatrix.html
http://www.cs.armstrong.edu/liang/intro11e/html/IntegerMatrix.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestRationalMatrix.html
http://www.cs.armstrong.edu/liang/intro11e/html/RationalMatrix.html

