
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
1

Chapter 25 Binary Search Trees

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
2

Objectives

▪ To design and implement a binary search tree (§25.2).

▪ To represent binary trees using linked data structures (§25.2.1).

▪ To search an element in binary search tree (§25.2.2).

▪ To insert an element into a binary search tree (§25.2.3).

▪ To traverse elements in a binary tree (§25.2.4).

▪ To delete elements from a binary search tree (§25.3).

▪ To display binary tree graphically (§25.4).

▪ To create iterators for traversing a binary tree (§25.5).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
3

Binary Trees

A list, stack, or queue is a linear structure that consists of a

sequence of elements. A binary tree is a hierarchical

structure. It is either empty or consists of an element, called

the root, and two distinct binary trees, called the left

subtree and right subtree.

60

55 100

57 67 107 45

G

F R

M T A

(A) (B)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
4

Binary Tree Terms

A Binary consists of

– A root

– A left binary tree (left child)

– A right binary tree (right child)

A node without children is a leaf. A node has one

patent, except for the root.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
5

Representing Binary Trees

A binary tree can be represented using a set of linked

nodes. Each node contains a value and two links named

left and right that reference the left child and right child,

respectively.

class TreeNode<E> {

E element;

TreeNode<E> left;

TreeNode<E> right;

public TreeNode(E o) {

element = o;

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Binary Search Tree
A binary search tree of (key, value) pairs,

with no duplicate keys, has the following

properties

Every node a left subtree has keys less than

the key of the root

Every node in its right subtree has keys

greater than the key of the node.

(often we only show the keys)

What is the difference w.r.t heaps?

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

Searching an Element in a Binary Search Tree
public search(E element) {

TreeNode<E> current = root; // Start from the root

while (current != null)

if (element key less than the key in current.element) {

current = current.left; // Go left

}

else if (element value greater than the value in
current.element) {

current = current.right; // Go right

}

else // Element matches current.element

return found ; // Element is found

return not found; // Element is not in the tree

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
8

Inserting an Element to a Binary Tree
if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
9

Trace Inserting 101 into the following tree

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
10

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
11

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
12

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

101 < 60?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
13

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

101 > 60?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current
parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
15

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
16

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
17

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 < 100 false

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
18

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
19

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
20

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
21

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
22

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
23

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

current

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
24

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

Since current.left is

null,current becomes null

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
25

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

Since current.left is

null,current becomes null

parent

current is null now

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
26

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

Since current.left is

null,current becomes null

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
27

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

parent

101

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
28

Trace Inserting 101 into the following tree, cont.

if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

60

55 100

57 45 67 107

root

parent

101

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
29

Inserting 59 into the Tree
if (root == null)

root = new TreeNode(element);

else {

// Locate the parent node

current = root;

while (current != null)

if (element value < the value in current.element) {

parent = current;

current = current.left;

}

else if (element value > the value in current.element) {

parent = current;

current = current.right;

}

else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node

if (element < parent.element)

parent.left = new TreeNode(elemenet);

else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

60

55 100

57 45 67 107

root

59 101

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
30

Tree Traversal

Tree traversal is the process of visiting each node in the
tree exactly once. There are several ways to traverse a tree.
This section presents depth-first: in-, pre-, post order

and breadth-first: level order traversals.

InOrder
– The inorder traversal is to visit the left subtree of the current node first

recursively, then the current node itself, and finally the right subtree of
the current node recursively.

Postorder
– The postorder traversal is to visit the left subtree of the current node

first, then the right subtree of the current node, and finally the current
node itself.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
31

Tree Traversal, cont.

Preorder

– The preorder traversal is to visit the current node first, then

the left subtree of the current node recursively, and
finally the right subtree of the current node
recursively.

Level order
– The level order (breadth-first) traversal is to visit the nodes

level by level. First visit the root, then all children of the
root from left to right, then grandchildren of the root from
left to right, and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
32

Tree Traversal, cont.

Inorder:

Postorder:

Preorder:

Level order:

60

55 100

57 45 67 107

root

59 101

45 55 57 59 60 67 100 101 107

45 59 57 55 67 101 107 100 60

60 55 45 57 59 100 67 107 101

60 55 100 45 57 67 107 59 101

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Breadth-first traversal (BFS)

Breadth-first processes the tree level by level

starting at the root and handling all the nodes

at a particular level from left to right.

To achieve we use a Queue, because the parent

child references are not sufficient

33

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Breadth-first traversal

34

60

20 70

10 40

30 50

60 – 20 – 70 – 10 – 40 – 30 – 50

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

LevelOrder

A

B

D

G

C

E

H

F

I

Queue Output

Init [A] -

Step 1 [B,C] A

Step 2 [C,D] A B

Step 3 [D,E,F] A B C

Step 4 [E,F,G,H] A B C D

Step 5 [F,G,H] A B C D E

Step 6 [G,H,I] A B C D E F

Step 7 [H,I] A B C D E F G

Step 8 [I] A B C D E F G H

Step 9 [] A B C D E F G H I

35

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
36

The Tree Interface

The Tree interface defines common
operations for trees.

«interface»
Tree<E>

+search(e: E): boolean

+insert(e: E): boolean

+delete(e: E): boolean

+inorder(): void

+preorder(): void

+postorder(): void

+getSize(): int

+isEmpty(): boolean

+clear(): void

Override the add, isEmpty, remove,

containsAll, addAll, removeAll,
retainAll, toArray(), and toArray(T[])

methods defined in Collection using

default methods.

Returns true if the specified element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree

successfully.

Prints the nodes in inorder traversal.

Prints the nodes in preorder traversal.

Prints the nodes in postorder traversal.

Returns the number of elements in the tree.

Returns true if the tree is empty.

Removes all elements from the tree.

«interface»

java.lang.Collection<E>

Tree

http://www.cs.armstrong.edu/liang/intro11e/html/Tree.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
37

The BST Class

Let’s define the binary tree class, named BST with A
concrete BST class can be defined to extend AbstractTree.

BST<E extends Comparable<E>>

#root: TreeNode<E>

#size: int

+BST()

+BST(objects: E[])

+path(e: E):
java.util.List<TreeNode<E>>

1

m
TreeNode<E>

Link

0

The root of the tree.

The number of nodes in the tree.

Creates a default BST.

Creates a BST from an array of elements.

Returns the path of nodes from the root leading to the

node for the specified element. The element may not be

in the tree.

«interface»
Tree<E>

BST

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
38

Deleting Elements in a Binary Search Tree

Locate the node that contains the element and its

parent node.

Let current point to the node that contains the

element in the binary tree and parent point to the

parent of the current node. (notice: parent can be

the root reference)

The current node may be a left child or a right

child of the parent node.

There are two cases.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
39

Deleting Elements in a Binary Search Tree

Case 1: The current node does not have a left child, as

shown in this figure (a). Simply connect the parent with the

right child of the current node, as shown in this figure (b).

parent

current

No left child

Subtree

 parent

Subtree

current may be a left or

right child of parent
Subtree may be a left or

right subtree of parent

current points the node

to be deleted

http://www.cs.armstrong.edu/liang/intro11e/html/BST.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
40

Deleting Elements in a Binary Search Tree

For example, to delete node 10 in Figure 25.9a. Connect the parent of

node 10 with the right child of node 10, as shown in Figure 25.9b.

20

10 40

30 80

root

50

16

27

20

40

30 80

root

50

16

27

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
41

Deleting Elements in a Binary Search Tree

Case 2: The current node has a left child.

Let rightMost point to the node that contains the largest

element in the left subtree and parentOfRightMost point

to its parent node.

Note that the rightMost node cannot have a right child,

but may have a left child.

Replace the element value in the current node with the

one in the rightMost node

Connect the parentOfRightMost node with the left child

of the rightMost node, and delete the rightmost node.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
42

Deleting Elements in a Binary Search Tree

Case 2 diagram

parent

current

.

.

.

 rightMost

parentOfRightMost

 parent

.

.

.

parentOfRightMost

Content copied to

current and the node

deleted

Right subtree Right subtree

current

current may be a left or

right child of parent

current points the node

to be deleted

The content of the current node is

replaced by content by the content of

the right-most node. The right-most

node is deleted.

leftChildOfRightMost leftChildOfRightMost

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
43

Deleting Elements in a Binary Search Tree

Case 2 example, delete 20

rightMost

20

10 40

30 80

root

50

16

27

16

10 40

30 80

root

50 27 14 14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
44

Examples

Delete this

node
George

Adam Michael

Daniel Jones Tom

Peter

Daniel

Adam Michael

Jones Tom

Peter

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
45

Examples

Daniel

Adam Michael

Jones Tom

Peter

Delete this

node

Daniel

Michael

Jones Tom

Peter

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
46

Examples

Daniel

Michael

Jones Tom

Peter

Delete this

node

Daniel

Jones

Tom

Peter

RunTestBSTDelete

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Alternative, more balanced

approach

Cases to Consider

– Delete something that is not there

Throw exception

– Delete a leaf

Easy, just set link from parent to null

– Delete a node with one child

– Delete a node with two children

47
CS200 - Trees

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Delete
Case 1: one child

5

8

6

8

6

Child becomes root

delete(5)

48
CS200 - Trees

http://www.cs.armstrong.edu/liang/intro11e/html/TestBSTDelete.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Delete
Case 2: two children

5

2

1

8

4 6 9

7

delete(5)Which are valid

replacement nodes?

49
CS200 - Trees

4 and 6, WHY?

max of left, min of right

what would be a good one here?

6, WHY?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Digression: inorder traversal

of BST

In order:

– go left

– visit the node

– go right

The keys of an inorder traversal of a BST are

in sorted order!

50
CS200 - Trees

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Replace with successor

5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that node with

its right child, if necessary (an easy delete case).

That node is the inorder successor of the root.

Can that node have two children? A left child?

7

6

2

1

8

4 7 9

delete(5)

51
CS200 - Trees

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Replace with predecessor

5

2

1

8

4 6 9

Replace root with its rightmost leftt descendant and replace that node with

its lef]t child, if necessary (an easy delete case).

That node is the inorder predecessor of the root.

Can that node have two children? A right child?

7

delete(5)

52
CS200 - Trees

2

1

8

6 9

7

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Delete

Case 2: two children

1. Find the inorder successor or predecessor M

of N’s search key.

– The node whose search key comes immediately

after or before N’s search key

2. Copy the item of M, to the deleting node N.

3. Remove the node M from the tree.

53
CS200 - Trees

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
54

Iterators

An iterator is an object that provides a

uniform way for traversing the elements in a

container such as a set, list, binary tree, etc.

RunTestBSTWithIterator

http://www.cs.armstrong.edu/liang/intro11e/html/TestBSTWithIterator.html

