
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
1

Chapter 28 Graphs and Applications

CS2: Data Structures and Algorithms

Colorado State University

Original slides by Daniel Liang

Modified slides by Chris Wilcox,

Wim Bohm, and Russ Wakefield

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
2

Objectives
▪ To model real-world problems using graphs and explain the Seven Bridges of

Königsberg problem (§28.1).

▪ To describe the graph terminologies: vertices, edges, simple graphs,

weighted/unweighted graphs, and directed/undirected graphs (§28.2).

▪ To represent vertices and edges using lists, edge arrays, edge objects, adjacency

matrices, and adjacency lists (§28.3).

▪ To model graphs using the Graph interface, the AbstractGraph class, and the

UnweightedGraph class (§28.4).

▪ To display graphs visually (§28.5).

▪ To represent the traversal of a graph using the AbstractGraph.Tree class (§28.6).

▪ To design and implement depth-first search (§28.7).

▪ To solve the connected-circle problem using depth-first search (§28.8).

▪ To design and implement breadth-first search (§28.9).

▪ To solve the nine-tail problem using breadth-first search (§28.10).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
3

Modeling Using Graphs

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
4

Seven Bridges of Königsberg

Island 1
Island 2

B

A

C
D

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
5

Basic Graph Terminologies

What is a graph? G=(V, E) = vertices (nodes) and edges

Weighted vs. Unweighted graphs

Directed vs. Undirected graphs

Adjacent vertices share an edge (Adjacent edges)

A vertex is Incident to an edge that it joins

Degree of a vertex = number of edges it joins

Neighborhood = subgraph with all adjacent vertices

A Loop is an edge that connects a vertex to itself

A Cycle is a path from a vertex to itself via other vertices

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
6

Weighted vs Unweighted Graph

https://www.slideshare.net/emersonferr/20-intro-graphs

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

Directed vs Undirected Graph

https://msdn.microsoft.com/en-us/library/ms379574(v=vs.80).aspx

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
8

More Graph Terminology

Parallel edge: two edges that share the same vertices, also

called multiple edges:

▪ Multiple edges in red, loops in blue

https://en.wikipedia.org/wiki/Multigraph

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
9

More Graph Terminology

Simple graph: undirected, unweighted, no loops, no

parallel edges:

http://mathworld.wolfram.com/SimpleGraph.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
10

More Graph Terminology

Complete graph: simple graph where every pair of

vertices are connected by an edge:

https://en.wikipedia.org/wiki/Complete_graph

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
11

Representing Graphs

Representing Vertices

Representing Edges: Edge Array

Representing Edges: Edge Objects

Representing Edges: Adjacency Matrices

Representing Edges: Adjacency Lists

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
12

Representing Vertices (Nodes)

String[] vertices = {“Seattle“, “San Francisco“, “Los Angles”, … };

List<String> vertices;

or

public class City {

String name;

}

City[] vertices = {city0, city1, … };

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
13

Representing Edges (Arcs)

int[][] edges = {{0, 1}, {0, 3} {0, 5}, {1, 0}, {1, 2}, … };

or

public class Edge {

int u, v;

public Edge(int u, int v) {

this.u = u;

this.v = v;

}

List<Edge> list = new ArrayList<>();

list.add(new Edge(0, 1)); list.add(new Edge(0, 3)); …

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

Representing Edges: Adjacency

Matrix
int[][] adjacencyMatrix = {

{0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle

{1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles

{1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver

{0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City

{1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago

{0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston

{0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York

{0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami

{0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} // Houston

};

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
15

Representing Edges: Adjacency Vertex List

List<Integer>[] neighbors = new List[12];

List<List<Integer>> neighbors = new ArrayList<>();

 neighbors[0]

 neighbors[1]

 neighbors[2]

 neighbors[3]

 neighbors[4]

 neighbors[5]

 neighbors[6]

 neighbors[7]

 neighbors[8]

 neighbors[9]

neighbors[10]

neighbors[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

 Houston

 1 3 5

 0 2 3

 1 3 4 10

 0 1 2 4 5

 2 3 5 7 8 10

 0 3 4 6 7

 5 7

 4 5 6 8

 4 7 9 10 11

 8 11

 2 4 8 11

 8 9 10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
16

Representing Edges: Adjacency Edge List

List<Edge>[] neighbors = new List[12];

 neighbors[0]

 neighbors[1]

 neighbors[2]

 neighbors[3]

 neighbors[4]

 neighbors[5]

 neighbors[6]

 neighbors[7]

 neighbors[8]

 neighbors[9]

neighbors[10]

neighbors[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

 Houston

Edge(0, 1) Edge(0, 3) Edge(0, 5)

Edge(1, 0) Edge(1, 2) Edge(1, 3)

Edge(2, 1) Edge(2, 3) Edge(2, 4) Edge(2, 10)

Edge(3, 0) Edge(3, 1) Edge(3, 2) Edge(3, 4) Edge(3, 5)

Edge(4, 2) Edge(4, 3) Edge(4, 5) Edge(4, 7) Edge(4, 8) Edge(4, 10)

Edge(5, 0) Edge(5, 3) Edge(5, 4) Edge(5, 6) Edge(5, 7)

Edge(6, 5) Edge(6, 7)

Edge(7, 4) Edge(7, 5) Edge(7, 6) Edge(7, 8)

Edge(8, 4) Edge(8, 7) Edge(8, 9) Edge(8, 10) Edge(8, 11)

Edge(9, 8) Edge(9, 11)

Edge(10, 2) Edge(10, 4) Edge(10, 8) Edge(10, 11)

Edge(11, 8) Edge(11, 9) Edge(11, 10)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
17

Representing Adjacency Edge List Using ArrayList

List<ArrayList<Edge>> neighbors = new ArrayList<>();

neighbors.add(new ArrayList<Edge>());

neighbors.get(0).add(new Edge(0, 1));

neighbors.get(0).add(new Edge(0, 3));

neighbors.get(0).add(new Edge(0, 5));

neighbors.add(new ArrayList<Edge>());

neighbors.get(1).add(new Edge(1, 0));

neighbors.get(1).add(new Edge(1, 2));

neighbors.get(1).add(new Edge(1, 3));

...

...

neighbors.get(11).add(new Edge(11, 8));

neighbors.get(11).add(new Edge(11, 9));

neighbors.get(11).add(new Edge(11, 10));

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
18

«interface»
Graph<V>

+getSize(): int

+getVertices(): List<V>

+getVertex(index: int): V

+getIndex(v: V): int

+getNeighbors(index: int): List<Integer>

+getDegree(index: int): int

+printEdges(): void

+clear(): void

+addVertex(v: V): boolean

+addEdge(u: int, v: int): boolean

+addEdge(e: Edge): boolean

+remove(v: V): boolean

+remove(u: int, v: int): boolean

+dfs(v: int): UnWeightedGraph<V>.SearchTree

+bfs(v: int): UnWeightedGraph<V>.SearchTree

Returns the number of vertices in the graph.

Returns the vertices in the graph.

Returns the vertex object for the specified vertex index.

Returns the index for the specified vertex.

Returns the neighbors of vertex with the specified index.

Returns the degree for a specified vertex index.

Prints the edges.

Clears the graph.

Returns true if v is added to the graph. Returns false if v

is already in the graph.

Adds an edge from u to v to the graph throws
IllegalArgumentException if u or v is invalid. Returns

true if the edge is added and false if (u, v) is already in

the graph.

Adds an edge into the adjacency edge list.

Removes a vertex from the graph.

Removes an edge from the graph.

Obtains a depth-first search tree starting from v.

Obtains a breadth-first search tree starting from v.

.

UnweightedGraph<V>

#vertices: List<V>

#neighbors: List<List<Edge>>

+UnweightedGraph()

+UnweightedGraph(vertices: V[], edges:

int[][])

+UnweightedGraph(vertices: List<V>,

edges: List<Edge>)

+UnweightedGraph(edges: int[][],

numberOfVertices: int)

+UnweightedGraph(edges: List<Edge>,

numberOfVertices: int)

Vertices in the graph.

Neighbors for each vertex in the graph.

Constructs an empty graph.

Constructs a graph with the specified edges and vertices

stored in arrays.

Constructs a graph with the specified edges and vertices

stored in lists.

Constructs a graph with the specified edges in an array

and the integer vertices 1, 2,

Constructs a graph with the specified edges in a list and

the integer vertices 1, 2, ….

The generic type V is the type for vertices.

TestGraph

UnweightedGraph

Run

Graph

http://www.cs.armstrong.edu/liang/intro11e/html/TestGraph.html
http://www.cs.armstrong.edu/liang/intro11e/html/UnweightedGraph.html
http://www.cs.armstrong.edu/liang/intro11e/html/Graph.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Graph Spanning Tree

from V

19

V V

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
20

Graph Traversals
Depth-first search and breadth-first search

Both traversals result in a spanning tree, which can be
modeled using a class.

 UnweightedGraph<V>.SearchTree

-root: int

-parent: int[]

-searchOrder: List<Integer>

+SearchTree(root: int, parent:

int[], searchOrder: List<Integer>)

+getRoot(): int

+getSearchOrder(): List<Integer>

+getParent(index: int): int

+getNumberOfVerticesFound(): int

+getPath(index: int): List<V>

+printPath(index: int): void

+printTree(): void

The root of the tree.

The parents of the vertices.

The orders for traversing the vertices.

Constructs a tree with the specified root, parent, and

searchOrder.

Returns the root of the tree.

Returns the order of vertices searched.

Returns the parent for the specified vertex index.

Returns the number of vertices searched.

Returns a list of vertices from the specified vertex index

to the root.

Displays a path from the root to the specified vertex.

Displays tree with the root and all edges.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
21

Depth-First Search
The depth-first search of a graph builds a “spanning tree” of all of the

reachable edges from the starting vertex v, using marking of the

visited nodes:

Input: G = (V, E) and a starting vertex v
Output: a DFS tree rooted at v

Tree dfs(vertex v) {

visit v;

for each neighbor w of v

if (w has not been visited) {

set v as the parent for w;

dfs(w);

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
22

Depth-First Search Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
23

Depth-First Search Example

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810

Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
24

Applications of the DFS
❖ Detecting whether a graph is connected. Search the graph starting

from any vertex. If the number of vertices searched is the same as

the number of vertices in the graph, the graph is connected.

Otherwise, the graph is not connected.

❖ Detecting whether there is a path between two vertices.

❖ Finding a path between two vertices.

❖ Finding all connected components. A connected component is a

maximal connected subgraph in which every pair of vertices are

connected by a path.

❖ Detecting whether there is a cycle in the graph, and finding a cycle

in the graph.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

DFS: Depth First Search

Explores edges from the most recently discovered

node; backtracks when reaching a dead-end. The

book does not used white, grey, black, but uses

visited (and implicitly unexplored). Recursive

code:DFS(u):

mark u as visited

for each edge (u,v) :

if v is not marked visited :

DFS(v)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

DFS and cyclic graphs

When DFS visits a node for the first time it is white.

There are two ways DFS can revisit a node:

1. DFS has already fully explored the node. What

color does it have then? Is there a cycle then?

2. DFS is still exploring this node. What color does

it have in this case? Is there a cycle then?

26

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

DFS and cyclic graphs

There are two ways DFS

can revisit a node:

1. DFS has already fully

explored the node. What

color does it have then?

Is there a cycle then?

2. DFS is still exploring this

node. What color does it

have in this case?

Is there a cycle then?

27

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

DFS and cyclic graphs

There are two ways DFS can revisit a node:

1. DFS has already fully explored

the node. What color does it have

then? Is there a cycle then?

No, the node is revisited

from outside.

2. DFS is still exploring this node.

What color does it have in this

case? Is there a cycle then?

Yes, the node is revisited on a

path containing the node itself.

So DFS with the white, grey, black coloring scheme detects a cycle

when a GREY node is visited

28

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Cycle detection: DFS + coloring

29

When a grey (frontier) node is visited, a cycle is detected.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Recursive / node coloring version

DFS(u):

#c: color, p: parent

c[u]=grey

forall v in Adj(u):

if c[v]==white:

parent[v]=u

DFS(v)

c[u]=black

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
31

Breadth-First Search

The breadth-first traversal of a graph is like the breadth-

first traversal of a tree discussed in §25.2.3, “Tree

Traversal.”

With breadth-first traversal of a tree, the nodes are visited

level by level. First the root is visited, then all the

children of the root, then the grandchildren of the root

from left to right, and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
32

Breadth-First Search
Input: G = (V, E) and a starting vertex v, Output: a BFS tree rooted at v

bfs(vertex v) {

create an empty queue for storing vertices to be visited;

add v into the queue;

mark v visited;

while the queue is not empty {

dequeue a vertex, say u, from the queue

process u;

for each neighbor w of u

if w has not been visited {

add w into the queue;

set u as the parent for w;

mark w visited;

}

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
33

Breadth-First Search Example

Queue: 0

Queue: 1 2 3

Queue: 2 3 4

isVisited[0] = true

isVisited[1] = true, isVisited[2] = true,

isVisited[3] = true

isVisited[4] = true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
34

Breadth-First Search Example

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810

Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
35

Applications of the BFS

❖ Detecting whether a graph is connected. A graph is connected if there is a path

between any two vertices in the graph.

❖ Detecting whether there is a path between two vertices.

❖ Finding a shortest path between two vertices. You can prove that the path between

the root and any node in the BFS tree is the shortest path between the root and the

node.

❖ Finding all connected components. A connected component is a maximal

connected subgraph in which every pair of vertices are connected by a

path.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Graphs Describing Precedence

 Edge from x to y indicates x should come before y,

e.g.:

– prerequisites for a set of courses

– dependences between programs

– set of tasks, e.g. building a computer

CS200 - Graphs
36

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Graphs Describing Precedence

Batman images are from the book “Introduction to bioinformatics algorithms”

CS200 - Graphs
37

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Graphs Describing Precedence
Want an ordering of the vertices of the graph

that respects the precedence relation

– Example: An ordering of CS courses

The graph must not contain cycles. WHY?

CS200 - Graphs
38

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

CS165

CS220

CS253

CS270

CS314CS320 CS356 CS370CS370CT310 CT320CT320

CS440CS440 CS410CS410CS464CS464

CS163

CS Courses Required for CS and ACT Majors

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Topological Sorting of DAGs

DAG: Directed Acyclic Graph

Topological sort: listing of nodes such that if (a,b) is

an edge, a appears before b in the list

Is a topological sort unique?

Question: Is a topological sort unique?

CS200 - Graphs
40

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

A directed graph without cycles

a b c

d e f

g
a,g,d,b,e,c,f

a,b,g,d,e,f,c

CS200 - Graphs
41

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Topological Sort Algorithm

Modification of DFS: Traverse tree using

DFS starting from all nodes that have no

predecessor.

Add a node to the list when ready to

backtrack.

CS200 - Graphs
42

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Topological Sort Algorithm

List toppoSort(Graph theGraph)

// use stack stck and list lst

// push all roots

for (all vertices v in the graph theGraph)

if (v has no predecessors)

stck.push(v)

Mark v as visited

// DFS

while (!stck.isEmpty())

if (all vertices adjacent to the vertex on top of

the stack have been visited)

v = stck.pop()

lst.add(0, v)

else

Select an unvisited vertex u adjacent to vertex v on

top of the stack

stck.push(u)

Mark u as visited

Set v as parent of u

return lst

CS200 - Graphs
43

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Algorithm 2: Example 1

a b c

d e f

g
f ceb dga

fc

e

b
d
g
a

CS200 - Graphs
44

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Topological sorting solution

A B C

D E F

G H

I

1/18

10/15 11/14

12/139/162/17

6/73/8

4/5 Red edges represent spanning tree

CS200 - Graphs
45

