
1

CS165: Priority Queues, Heaps

Prichard Ch. 12

CS165 - Priority Queues 1

Priority Queues

 Characteristics

 Items are associated with a Comparable value: priority

 Provide access to one element at a time - the one with

the highest priority

 offer(E e) and add(E e) – inserts the element into

the priority queue based on the priority order

 remove() and poll() – removes the head of the

queue (which is the highest priority) and returns it

CS165 - Priority Queues 2

PQ – Reference-based Implementation

 Reference-based implementation

 Sorted in descending order
 Highest priority value is at the beginning of the linked list

 remove() returns the item that pqHead references and
changes pqHead to reference the next item.

 offer(E e) must traverse the list to find the correct
position for insertion.

969699.299.2 95.895.8 33

pqHead

…

CS165 - Priority Queues 3

2

Complete tree definition

 Complete binary tree of height h
 zero or more rightmost leaves not present

at level h

 A binary tree T of height h is
complete if
 All nodes at level h – 2 and above have

two children each, and

 When a node at level h – 1 has children,
all nodes to its left at the same level have
two children each, and

 When a node at level h - 1 has one child,
it is a left child

 So the leaves at level h go from left to
right

4CS165 - Priority Queues

h-2:

h-1:

h:

Complete Binary Tree

5

Level-by-level numbering of a complete binary tree, NOTE 0 based!Level-by-level numbering of a complete binary tree, NOTE 0 based!

0:Jane0:Jane

1:Bob1:Bob 2:Tom2:Tom

3:Alan3:Alan 4:Ellen4:Ellen 5:Nancy5:Nancy

What is the parent

child index relationship?

What is the parent

child index relationship?

CS165 - Priority Queues

left child i: at 2*i+1left child i: at 2*i+1

right child i: at 2*(i+1)right child i: at 2*(i+1)

lparent i: at (i-1)/2lparent i: at (i-1)/2

So we can store a complete binary tree in an array!!So we can store a complete binary tree in an array!!

Heap - Definition

 A maximum heap (maxheap) is a complete

binary tree that satisfies the following:

 It is a leaf, or it has the heap property:

 Its root contains a key greater or equal to the keys of

its children

 Its left and right sub-trees are also maxheaps

 A minheap has the root less or equal children,

and left and right sub trees are also minheaps

CS165 - Priority Queues 6

3

maxHeap Property Implications

 Implications of the heap property:

 The root holds the maximum value (global property)

 Values in descending order on every path from root to

leaf

 A Heap is NOT a binary search tree, as in a BST

the nodes in the right sub tree of the root are

larger than the root

CS165 - Priority Queues 7

Examples

Satisfies

heap property

AND

Complete

Satisfies heap

property BUT

Not complete

Does not

satisfy heap

property AND

Not complete

5050

25252020

1010 1515 55

3030

252555

1010

1515

2020

3030

20201515

1010 55 2525

CS165 - Priority Queues 8

Array(List) Implementation

5050

25252020

1010 1515 55

5050
2020

2525
1010
1515

55

0

1

2

3

4

5

CS165 - Priority Queues 9

4

Array(List) Implementation

 Traversal:

 Root at position 0

 Left child of position i at position 2*i+1

 Right child of position i at position 2*(i+1)

 Parent of position i at position (i-1)/2

(int arithmetic truncates)

CS165 - Priority Queues 10

Heap Operations - heapInsert

 Step 1: put a new value into first open position
(maintaining completeness), i.e. at the end

 but now we potentially violated the heap property, so:

 Step 2: bubble values up

 Re-enforcing the heap property

 Swap with parent, if new value > parent, until in the right place.

 The heap property holds for the tree below the new value,
when swapping up

CS165 - Priority Queues 11

Swapping up

 Swapping up enforces heap property for sub

tree below the new, inserted value:

 if (new > x) swap(x,new)

x>y, therefore

new > y

CS165 - Priority Queues 12

x

newy
new

x y

5

Insertion into a heap (Insert 15)

99

6655

33 22 1515

Insert 15

CS165 - Priority Queues 13

bubble up

Insertion into a heap (Insert 15)

99

66

55

33 22

CS165 - Priority Queues 14

1515

bubble up

Insertion into a heap (Insert 15)

1515

66

55

33 22

CS165 - Priority Queues 15

99

6

Heap operations – heapDelete

 Step 1: remove value at root (Why?)

 Step 2: substitute with rightmost leaf of bottom level

(Why?)

 Step 3: bubble down

 Swap with maximum child as necessary, until in place

 each bubble down restores the heap property for the max

child

 this is called HEAPIFY

CS165 - Priority Queues 16

Swapping down

 Swapping down enforces heap property at

the swap location:

 new<x and y<x:

swap(x,new)

x>y and x>new

CS165 - Priority Queues 17

new

xy
x

new y

Deletion from a heap

55

99

33 22

1010

66

Delete 10
Place last node in root

CS165 - Priority Queues 18

7

99

55

33 22

66

CS165 - Priority Queues 19

bubble down

heapify

draw the heap

55

99

33 22

66

CS165 - Priority Queues 20

delete again

draw the heap

CS165 - Priority Queues 21

55

66

33

2255

22

33

66

8

HeapSort

 Algorithm

 Insert all elements (one at a time) to a heap

 Iteratively delete them

 Removes minimum/maximum value at each step

CS165 - Priority Queues 22

HeapSort

 Alternative method (in-place):

 buildHeap: create a heap out of the input array:
 Consider the input array as a complete binary tree

 Create a heap by iteratively expanding the portion of the
tree that is a heap

 Leaves are already heaps

 Start at last internal node

 Go backwards calling heapify with each internal node

 Iteratively swap the root item with last item in
unsorted portion and rebuild

CS165 - Priority Queues 23

Building the heap

 WHY start at (n-2)/2?

 WHY go backwards?

 The whole method is called buildHeap

 One bubble down is called heapify

buildheap(n){

for (i = (n-2)/2 down to 0)

//pre: the tree rooted at index is a semiheap

//i.e., the sub trees are heaps

heapify(i); // bubble down

//post: the tree rooted at index is a heap

}

buildheap(n){

for (i = (n-2)/2 down to 0)

//pre: the tree rooted at index is a semiheap

//i.e., the sub trees are heaps

heapify(i); // bubble down

//post: the tree rooted at index is a heap

}

CS165 - Priority Queues 24

9

CS165 - Priority Queues 25

66

33 77

101099 22

66 33 77 99 22 1010

Draw as a Complete Binary Tree:

Repeatedly heapify, starting at last internal node,

going backwards

CS165 - Priority Queues 26

66

33 1010

7799 22

CS165 - Priority Queues 27

66

99 1010

7733 22

10

CS165 - Priority Queues 28

1010

99 77

6633 22

1010 99 77 33 22 66

In place heapsort using an array

 First build a heap out of an input array using

buildHeap(). See previous slides.

 Then partition the array into two regions; starting

with the full heap and an empty sorted and

stepwise growing sorted and shrinking heap.

29

HEAP

Sorted (Largest

elements in array)

CS165 - Priority Queues 30

1010 99 66 33 22 55

99 55 66 33 22 1010

55 33 22 10109966

66 55 22 33 99 1010

33 22 1010996655

22 33 1010996655

22 33 1010996655

HEAP

SORTED

Do it, do it

CS165 - Priority Queues

