
5/7/2018

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
1

Chapter 18 Recursion

CS1: Java Programming

Colorado State University

Original slides by Daniel Liang

Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
2

Motivations

Suppose you want to find all the files under a

directory that contains a particular word. How do

you solve this problem? There are several ways to

solve this problem. An intuitive solution is to use

recursion by searching the files in the

subdirectories recursively.

5/7/2018

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
3

Motivations

H-trees, depicted in Figure 18.1, are used in a very large-
scale integration (VLSI) design as a clock distribution
network for routing timing signals to all parts of a chip
with equal propagation delays. How do you write a
program to display H-trees? A good approach is to use
recursion.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
4

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

n! = n * (n-1)!

0! = 1

RunComputeFactorial

http://www.cs.armstrong.edu/liang/intro11e/html/ComputeFactorial.html

5/7/2018

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
5

Computing Factorial

factorial(4)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
6

Computing Factorial

factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

5/7/2018

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
8

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

5/7/2018

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
9

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
10

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

5/7/2018

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
11

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
12

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)

= 4 * 3 * 2

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

5/7/2018

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
13

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * (6)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * (6)

= 24

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

5/7/2018

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
15

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

16

Trace Recursive factorial

animation

Executes factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

5/7/2018

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

17

Trace Recursive factorial

animation

Executes factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

18

Trace Recursive factorial

animation

Executes factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

5/7/2018

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

19

Trace Recursive factorial

animation

Executes factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

20

Trace Recursive factorial

animation

returns 1

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

5/7/2018

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

21

Trace Recursive factorial

animation

returns factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

22

Trace Recursive factorial

animation

returns factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

5/7/2018

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

23

Trace Recursive factorial

animation

returns factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

24

Trace Recursive factorial

animation

returns factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

5/7/2018

13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

25

Trace Recursive factorial

animation

returns factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
26

factorial(4) Stack Trace

Space Required

for factorial(4)
1 Space Required

for factorial(4)

2 Space Required

for factorial(3)

Space Required

for factorial(4)

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Space Required

for factorial(4)

6

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

7

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

8 Space Required

for factorial(3)

Space Required

for factorial(4)
9

5/7/2018

14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
27

Other Examples

f(0) = 0;

f(n) = n + f(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
28

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)

+fib(1) = 1 + fib(1) = 1 + 1 = 2

RunComputeFibonacci

http://www.cs.armstrong.edu/liang/intro11e/html/ComputeFibonacci.html

5/7/2018

15

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
29

Fibonnaci Numbers, cont.

return fib(3) + fib(2)

return fib(2) + fib(1)

return fib(1) + fib(0)

return 1

return fib(1) + fib(0)

return 0

return 1

return 1 return 0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0)

6: return fib(0)

8: call fib(1)

9: return fib(1)

10: return fib(3)
11: call fib(2)

16: return fib(2)

12: call fib(1) 13: return fib(1)
14: return fib(0)

15: return fib(0)

fib(4)

0: call fib(4) 17: return fib(4)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
30

Characteristics of Recursion

All recursive methods have the following characteristics:

– One or more base cases (the simplest case) are used to stop
recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it
into subproblems. If a subproblem resembles the original
problem, you can apply the same approach to solve the
subproblem recursively. This subproblem is almost the
same as the original problem in nature with a smaller size.

5/7/2018

16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

On to peer instruction

31

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
32

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for
n times. You can break the problem into two subproblems:
one is to print the message one time and the other is to print
the message for n-1 times. The second problem is the same
as the original problem with a smaller size. The base case
for the problem is n==0. You can solve this problem using
recursion as follows:

nPrintln(“Welcome”, 5);
public static void nPrintln(String message, int times) {

if (times >= 1) {

System.out.println(message);

nPrintln(message, times - 1);

} // The base case is times == 0

}

5/7/2018

17

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Exercise
Let’s write a method reverseLines(Scanner scan) that

reads lines using the scanner and prints them in reverse order.

– Use recursion without using loops.

– Example input: Expected output:

this no?

is fun

fun is

no? this

– What are the cases to consider?

How can we solve a small part of the problem at a time?

What is a file that is very easy to reverse?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Reversal pseudocode

Reversing the lines of a file:

– Read a line L from the file.

– Print the rest of the lines in reverse order.

– Print the line L.

If only we had a way to reverse the rest of the lines of the

file....

5/7/2018

18

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Reversal solution

public void reverseLines(Scanner input) {

if (input.hasNextLine()) {

// recursive case

String line = input.nextLine();

reverseLines(input);

System.out.println(line);

}

}

– Where is the base case?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Call stack: The method invocations active

at any given time.

reverseLines(scanner);

input file:output:
this
is
fun
no?

no?
fun
is
this

Tracing our algorithm

public void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); //
”this"

reverseLines(input);
System.out.println(line);

}
}

public void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // ”is"
reverseLines(input);
System.out.println(line);

}
}

public void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); //
”fun"

reverseLines(input);
System.out.println(line);

}
}

public void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); //
”no?"

reverseLines(input);
System.out.println(line);

}
}

public void reverseLines(Scanner input) {
if (input.hasNextLine()) { // false

...
}

}

5/7/2018

19

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Recursive Helper Methods

public String reverseString(String s){

if (s.length() == 0)

return s;

return reverseString(s.substring(1)) + s.charAt(0);

}

37

This reverseString method is not efficient, because it
creates a new string for every recursive call. To avoid
creating new strings, use a helper method:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Recursive Helper Methods

public String reverseString2(String s){

if (s.length() == 0)

return s;

return reverseString2(s,0);

}

public String reverseString2(String s, int index){

if (index == s.length())

return "";

return reverseString2(s,index+1) + s.charAt(index);

}
38

reverseString method with a helper method:

5/7/2018

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
39

Recursive Binary Search

1. Case 1: If the key is less than the middle element,
recursively search the key in the first half of the array.

2. Case 2: If the key is equal to the middle element, the
search ends with a match.

3. Case 3: If the key is greater than the middle element,
recursively search the key in the second half of the
array.

RecursiveBinarySearch

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
40

Recursive Implementation
/** Use binary search to find the key in the list */

public static int recursiveBinarySearch(int[] list, int key) {

int low = 0;

int high = list.length - 1;

return recursiveBinarySearch(list, key, low, high);

}

/** Use binary search to find the key in the list between

list[low] list[high] */

public static int recursiveBinarySearch(int[] list, int key,

int low, int high) {

if (low > high) // The list has been exhausted without a match

return -low - 1;

int mid = (low + high) / 2;

if (key < list[mid])

return recursiveBinarySearch(list, key, low, mid - 1);

else if (key == list[mid])

return mid;

else

return recursiveBinarySearch(list, key, mid + 1, high);

}

http://www.cs.armstrong.edu/liang/intro11e/html/RecursiveBinarySearch.html

5/7/2018

21

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
41

Directory Size

The preceding examples can easily be solved without using
recursion. This section presents a problem that is
difficult to solve without using recursion. The problem is
to find the size of a directory. The size of a directory is
the sum of the sizes of all files in the directory. A
directory may contain subdirectories. Suppose a
directory contains files , , ..., , and subdirectories , , ..., ,
as shown below.

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
42

Directory Size

The size of the directory can be defined recursively as
follows:

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

RunDirectorySize

http://www.cs.armstrong.edu/liang/intro11e/html/DirectorySize.html

5/7/2018

22

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Spock’s dilemma

Entering a star system for the first time,

Spock has a limited time before he has to go

pick up Kirk.

– There are n number of planets

– Spock has time to visit k planets

How many different combinations of

planets can Spock visit?

43

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Spock’s dilemma

public long combRec(long n, long k){

if (n==k || k==0)

return 1;

else

return combRec(n-1,k-1) +

combRec(n-1,k);

44

5/7/2018

23

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

mkchange (int n)

45

Precondition: n >= 0

Your method must return the number of ways amount n

can be paid with quarters (25c), dimes (10c), nickels(5c),

and penneys (1c).

For example, 10 cent can be paid in four ways:

1. ten penneys

2. a nickel and five penneys

3. two nickels

4. one dime

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

mkchange (int n)

public static final int[] coins = {1, 5, 10, 25};

public int mkChange(int n){

return mkChange(coins.length-1,n);

}

46

5/7/2018

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

mkchange (int k, int n)

public int mkChange(int k, int n){

if (n < 0 || k < 0)

return 0;

if (n == 0)

return 1;

return mkChange(k-1,n) +

mkChange(k, n-coins[k]);

}

47

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

pentagonPark (int n)

pentagonPark computes in how many different ways a parking lot of

size n can be filled with three kinds of vehicles:

– Civics, size 1

– Explorers, size 2

– Tanks, size 3

Here are some examples:

– A parking lot of size 1 can have 1 Civic (C), so the answer is 1.

– A parking lot of size 2 can have 1 Explorer (E) or two Civics (CC),

so the answer is 2.

– A parking lot of size 3 can have one Tank (T), a Civic and an

Explorer (CE), or an Explorer and a Civic (EC), or 3 Civics

(CCC), so the answer is 4.

48

5/7/2018

25

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

pentagonPark (int n)

public static long pentagonPark (int n)

{

if (n == 1) return 1; // a Civic

else if (n == 2) return 2; // an Excursion or two Civics

else if (n == 3) return 4; //CCC; CE; EC; T

else return pentagonPark(n-3) // tank in last position

+ pentagonPark(n-2) // Excursion in last position

+ pentagonPark(n-1); // Civic in last position

}

49

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Memoization

Problems like Fibonacci and Pentagon Park

create “bushy” trees.

These trees are full of repeated calls

Tremendous speedup by saving

intermediate results

50

5/7/2018

26

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Fast Fib

private long[] memo = new long[100];

public long fastFibo(int n){

if(n<2) return n;

if (memo[n]==0)

memo[n] = fastFibo(n-1) +

fastFibo(n-2);

return memo[n];

}

51

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Fast Spock

public static long spockDilemma (int n, int k, long [][] A)

if (A[n][k] == 0)

{

if (k == 0 || n == k) // pick nobody or pick everybody

A[n][k] = 1;

else

A[n][k] = spockDilemma(n-1,k,A) // pick a committee without you

+ spockDilemma(n-1,k-1,A); // pick a committee with you

}

return A[n][k];

}

52

5/7/2018

27

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Fast pentagonPark

public static long pentagonPark (int n, long [] A)

if (A[n] == 0) // you haven't already solved this subproblem

{

if (n == 1) A[n] = 1; // a Civic

else if (n == 2) A[n] = 2; // an Excursion or two Civics

else if (n == 3) A[n] = 4; //CCC; CE; EC; T

else

A[n] = pentagonPark(n-3,A) // tank in last position

+ pentagonPark(n-2,A) // Excursion in last position

+ pentagonPark(n-1,A); // Civic in last position

}

return A[n];

}

53

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

On to peer instruction

54

5/7/2018

28

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
55

Tower of Hanoi

▪ There are n disks labeled 1, 2, 3, . . ., n, and three

towers labeled A, B, and C.

▪ No disk can be on top of a smaller disk at any

time.

▪ All the disks are initially placed on tower A.

▪ Only one disk can be moved at a time, and it must

be the top disk on the tower.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
56

Tower of Hanoi, cont.

5/7/2018

29

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
57

Solution to Tower of Hanoi
The Tower of Hanoi problem can be decomposed into three

subproblems.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
58

Solution to Tower of Hanoi

❑ Move the first n - 1 disks from A to C with the assistance of tower
B.

❑ Move disk n from A to B.

❑ Move n - 1 disks from C to B with the assistance of tower A.

RunTowerOfHanoi

http://www.cs.armstrong.edu/liang/intro11e/html/TowerOfHanoi.html

5/7/2018

30

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
59

Exercise 18.3 GCD

gcd(2, 3) = 1

gcd(2, 10) = 2

gcd(25, 35) = 5

gcd(205, 301) = 5

gcd(m, n)

Approach 1: Brute-force, start from min(n, m) down to 1,

to check if a number is common divisor for both m and

n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm

Approach 3: Recursive method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
60

Approach 2: Euclid’s algorithm
// Get absolute value of m and n;

t1 = Math.abs(m); t2 = Math.abs(n);

// r is the remainder of t1 divided by t2;

r = t1 % t2;

while (r != 0) {

t1 = t2;

t2 = r;

r = t1 % t2;

}

// When r is 0, t2 is the greatest common

// divisor between t1 and t2

return t2;

5/7/2018

31

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
61

Approach 3: Recursive Method

gcd(m, n) = n if m % n = 0;

gcd(m, n) = gcd(n, m % n); otherwise;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
62

Fractals?

A fractal is a geometrical figure just like

triangles, circles, and rectangles, but fractals

can be divided into parts, each of which is a

reduced-size copy of the whole. There are

many interesting examples of fractals. This

section introduces a simple fractal, called

Sierpinski triangle, named after a famous

Polish mathematician.

5/7/2018

32

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
63

Sierpinski Triangle
1. It begins with an equilateral triangle, which is considered to be

the Sierpinski fractal of order (or level) 0, as shown in Figure
(a).

2. Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown in Figure (b).

3. Leave the center triangle intact. Connect the midpoints of the
sides of the three other triangles to create a Sierpinski of order
2, as shown in Figure (c).

4. You can repeat the same process recursively to create a
Sierpinski triangle of order 3, 4, ..., and so on, as shown in
Figure (d).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
64

Sierpinski Triangle Solution

RunSierpinskiTriangle

http://www.cs.armstrong.edu/liang/intro11e/html/SierpinskiTriangle.html

5/7/2018

33

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
65

Recursion vs. Iteration

Recursion is an alternative form of program

control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the

program calls a method, the system must assign

space for all of the method’s local variables and

parameters. This can consume considerable

memory and requires extra time to manage the

additional space.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
66

Advantages of Using Recursion

Recursion is good for solving the problems that are

inherently recursive.

5/7/2018

34

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
67

Tail Recursion

A recursive method is said to be tail recursive if

there are no pending operations to be performed on

return from a recursive call.

Non-tail recursive

Tail recursive

ComputeFactorial

ComputeFactorialTailRecursion

http://www.cs.armstrong.edu/liang/intro11e/html/ComputeFactorial.html
http://www.cs.armstrong.edu/liang/intro11e/html/ComputeFactorialTailRecursion.html

