
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
1

Chapter 20 Lists, Stacks, Queues,

and Priority Queues

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
2

What is a Data Structure?

A collection of data elements

Stored in a structured fashion

With operations that access & manipulate

elements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
3

Java Collections Framework

Collection is a java interface

– Java.utils.Container

Defines abstract methods for objects that

contain other objects (elements)

– Add(E e)

– Remove(E e)

– Contains(E e)

– toArray(E e)

These are

examples, not

an exhaustive

list

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Three Types of Collections

(interfaces that implement Collection)

▪ Lists – Stores elements in sequential order

▪ Ordered Collection

▪ Sets – lists allow duplicates, sets do not

▪ Unordered Collection

▪ Maps – data structure based on {key, value}

pair

▪ Holds two objects per entry

▪ May contain duplicate values

▪ Keys are always unique

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
5

Java Collections Framework

Set and List are subinterfaces of Collection.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
6

The List Interface

Elements stored in sequential order

Programs can specify where an element is

stored.

Programs can access elements by index.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

The List Interface, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Iterators

An iterator is a generalization of a reference

– An abstract way of accessing an element

Iterator is an interface

– Java.util.Iterator

Methods for sequentially accessing

elements

– hasNext()

– next()

– remove()

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Why Iterators?

Iterators allow you to abstract away the data

structure

Given an iterator, you can access elements

in order

– In a list

– In a set

– In a map

The Iterable interface requires an object to

implement iterators

9
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

The Collection Interface

10

«interface»

java.util.Collection<E>

+add(e: E): boolean

+addAll(c: Collection<? extends E>):
boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c:
Collection<?>):boolean

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>):
boolean

+retainAll(c: Collection<?>):
boolean

+size(): int

+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new element e to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch
23).

«interface»

java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

«interface»

java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super

E>): default void

Returns an iterator for the elements in this collection.

Performs an action for each element in this iterator.

The Iterable interface has an Iterator (diamond)

allowing sequential access to the elements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
11

The List Iterator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
12

Array vs ArrayList vs LinkedList

• ArrayList class and the LinkedList class

• Concrete implementations of the List interface.

• Usage depends on your specific needs.

• Efficiency

• ArrayList – Fast random access through indices

• LinkedList – Fast insertion and deletion of elements
at specific locations

• Array – Does not support insertion or deletion of
elements

• But the most efficient if insert/delete not needed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
13

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.

Creates an array list from an existing collection.

Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()

+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
15

LinkedListArrayList

AbstractList
interface

List

interface

Collection AbstractCollection

AbstractSequentialList

interface

Iterable

interface

Iterator

List Hierarchy

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
16

Example: Using ArrayList and

LinkedList

Create an array list filled with numbers

Insert new elements in specific locations

Create a linked list from the array list

Insert and remove elements from the list.

Traverse the list forward and backward.

RunTestArrayAndLinkedList

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Comparable vs Comparator

Comparable

– Implemented with compareTo

– Defines the natural order for the object

i.e. the order you will use most of the time

Comparator

– Implemented with compare()

– Define an order for a specific purpose

17
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
18

The Comparator Interface

An interface for comparing arbitrary elements

– The elements don’t have to be Comparable

– Java.util.Comparator

Defines a method called compare(T o1, T o2)

Used as an argument to methods like sort(collection,

CompareObject)

http://www.cs.armstrong.edu/liang/intro11e/html/TestArrayAndLinkedList.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
19

The Comparator Interface

public int compare(Object element1, Object element2)

Returns a negative value if element1 is less than
element2, a positive value if element1 is greater than
element2, and zero if they are equal.

RunTestComparator

GeometricObjectComparator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
20

The Collections Class

The Collections class contains various static methods for

operating on collections and maps, for creating

synchronized collection classes, and for creating read-

only collection classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
21

The Collections Class UML Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
22

The Vector and Stack Classes

The Java Collections Framework was introduced
with Java 2. Several data structures were
supported prior to Java 2. Among them are the
Vector class and the Stack class. These classes
were redesigned to fit into the Java Collections
Framework, but their old-style methods are
retained for compatibility. This section
introduces the Vector class and the Stack class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
23

The Stack Class

The Stack class represents a last-in-first-

out stack of objects. The elements are

accessed only from the top of the stack.

You can retrieve, insert, or remove an

element from the top of the stack.

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E) : E

+search(o: Object) : int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

The vector class is

deprecated, but

similar to ArrayList

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
24

Queues and Priority Queues

Queue is a first-in/first-out data structure.

Elements are appended to the end of the queue.

Elements are removed from the beginning of the

queue.

Priority queues assign priorities to elements.

The element with the highest priority is removed

first.

http://www.cs.armstrong.edu/liang/intro11e/html/GeometricObjectComparator.html
http://www.cs.armstrong.edu/liang/intro11e/html/GeometricObjectComparator.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
25

The Queue Interface

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
26

Using LinkedList for Queue

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
27

The PriorityQueue Class

RunPriorityQueueDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
28

Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Run

Evaluate Expression

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Some examples
2 + 3

When we see + we haven’t seen operand 3 yet. Use an

operandStack to push operands, and an operatorStack

to push operators:

push (2, operandStack)

push (+, operatorStack)

push (3, operandStack)

End of expression: apply operator to operands

Why wait until we see the end or rest of expression?

2+3*4

29
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

2 + 3 – 4 is (2+3) – 4, and NOT 2 + (3-4)

push (2, operandStack)

push (+, operatorStack)

push (3, operandStack)

Seeing -: apply operator on stack to operands

push(-, operatorStack)

push(4, operandStack)

End: apply operator(s) to operands

30

http://www.cs.armstrong.edu/liang/intro11e/html/PriorityQueueDemo.html
http://www.cs.armstrong.edu/liang/intro11e/html/EvaluateExpression.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

2+3*4-5

push (2, operandStack)

push (+, operatorStack)

push (3, operandStack)

*: has precedence over +, so

push (*, operatorStack)

push (4, operandStack)

-: apply operators to operands,

push (-, operatorStack)

5:push (5, operandStack)

End: apply operators to operands

31
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

2*(3+4)/5

push (2, operandStack)

push (*, operatorStack)

(: make a substack at top of operatorStack:

push (‘(‘, operatorStack)

push (3, operandStack)

push (+, operatorStack)

push (4, operandStack)

): apply operators to operands until ‘(’, pop (‘(’)

push (/, operatorStack)

push (5, operandStack)

End: apply operators to operands

32

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
33

Algorithm
Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators,

and the parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the

top of operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the

top of operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from

the top of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until

operatorStack is empty.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
34

Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
35

Objectives
❑ To explore the relationship between interfaces and classes in the Java

Collections Framework hierarchy (§20.2).

❑ To use the common methods defined in the Collection interface for operating
collections (§20.2).

❑ To use the Iterator interface to traverse the elements in a collection (§20.3).

❑ To use a for-each loop to traverse the elements in a collection (§20.3).

❑ To explore how and when to use ArrayList or LinkedList to store elements
(§20.4).

❑ To compare elements using the Comparable interface and the Comparator
interface (§20.5).

❑ To use the static utility methods in the Collections class for sorting, searching,
shuffling lists, and finding the largest and smallest element in collections
(§20.6).

❑ To develop a multiple bouncing balls application using ArrayList (§20.7).

❑ To distinguish between Vector and ArrayList and to use the Stack class for
creating stacks (§20.8).

❑ To explore the relationships among Collection, Queue, LinkedList, and
PriorityQueue and to create priority queues using the PriorityQueue class
(§20.9).

❑ To use stacks to write a program to evaluate expressions (§20.10).

