
More Linux Commands

0.1 wc

The Linux command for acquiring size statistics on a file is wc. This command can provide
information from line count, to bytes in a file.

Open up a terminal, make sure you are in your home directory, and run the command.

wc ~/public html/index.html

Examine the three numbers outputted. Next run the following command.

wc -l ~/public html/index.html

Notice that only one number was outputted. Compare this number with the contents of your
public html/index.html file.

Note that your output will likely differ from the following.

denver:~$ wc ~/public html/index.html

6 12 81 public html/index.html

denver:~$ wc -l ~/public html/index.html

6 public html/index.html

denver:~$

Question

1 What statistic did the wc -l command show?
A. The number of bytes B. The number of lines C. The number of words D. The
number of characters

0.2 cat

We have used editors to edit files, however, this is tedious if we would just like to view their
contents. To catenate a file to the terminal use the cat command.

Try it out by issuing the following command, from you home directory.

1



denver:~$ cat public html/index.html

<html>

<head></head>

<body>

Hello my name is John Doe

</body>

</html>

Now use gedit to create a file named test01, in a new directory, and fill it with some text.
Then cat the contents of it.

denver:~$ mkdir cs192 lab2

denver:~$ gedit cs192 lab2/test01

(now add content to this file, then save and close it)

denver:~$ cat ~/public html/index.html ~/cs192 lab2/test01

Question

2 What does listing more than one file with the cat command do?
A. It only displays the first file B. It displays each file separated by the file name
C. It gives an error D. It displays each file in the order they were listed, no separation

0.3 clear

As we use commands like cat, our console can become very cluttered. It is sometimes helpful
to clear the screen. The Linux command for this is clear and is demonstrated below.

denver:~$ cat ~/public html/index.html

(lines of output)

denver:~$ clear

(screen now only shows a prompt)

0.4 diff

Another useful command for Linux is diff. This command can be used for testing your pro-
gram’s output with expected output.

Now lets copy over ~/cs192 lab2/test01 to another file. Change the second file, adding
one line, and replacing a word in another line to all caps. Then use the diff command to
compare them.

2



denver:~$ cp ~/cs192 lab2/test01 ~/cs192 lab2/test02

denver:~$ gedit ~/cs192 lab2/test02

(change one line to all caps, add another line; save and quit)

denver:~$ diff ~/cs192 lab2/test01 ~/cs192 lab2/test02

(output of the diff command, showing lines that differ)

Now try the same command with the -i flag.

diff -i ~/cs192 lab2/test01 ~/cs192 lab2/test02

Question

3 What does the -i flag do to the diff command?
A. It is not a valid flag B. It suppresses all output C. It only produces output when
files are different D. It ignores lines that only differ in case

0.5 date

It is common in shell scripts, and programs, do perform certain actions depending on the date
and time. The Linux command for acquiring this information is date. Issue the following
command (note output will obviously depend on the date, although the format will stay the
same).

denver:~$ date

Wed Aug 19 23:26:16 MDT 2015

Next try issuing the following commands and notice how the output changes.

denver:~$ date +"%m"

(output here)

denver:~$ date +"%M"

(output here)

denver:~$ date +"The month is %B and the nano seconds are %N"

(output here)

Question

4 What does the plus sign, followed by a quoted string, do for the date command?
A. Allows you to specify output format B. It will produce an error C. Extra
arguments are ignored D. The provided text will proceed the output of the date
command

3



0.6 less

We have seen the cat command to look at files, however, a better command, for longer files, is
the less command. Issue the following command to view information on the CS department’s
computers using the less command.

denver:~$ less ~info/machines

(press 'q' to quit the page)

The controls for the less pager are described below. Note that these controls are the same as
the man command, because man uses less to view the manual pages.

Command Description

ENTER, e, j Scroll forward one line
y, k Scroll backwards one line
SPACE, f Scroll forward one window
b Scroll backwards one screen
/ Search forward for a pattern
? Search backwards for pattern
n Move to next pattern match
h Display help screen
v Opens file in text editor, defaults to the vi editor
q Quit

Now let’s give two file arguments to less.

denver:~$ less ~info/machines ~/public html/index.html

(Inside man page. Now press :n and see what happens)

denver:~$

Question

5 What did pressing :n inside less do, when the command was invoked with multiple files
as arguments?
A. It quit the program B. It moved on to the next file C. It moved back to the
previous file D. It paged down to the bottom

0.7 Piping and Redirection

Some commands may produce a lot of output. It is beneficial to have a way to use the output
of one command as the input to another. In Linux there is a piping utility that allows this.

4



Issue the following commands, keeping track of what is changing in the file in question af-
ter every command.

denver:~$ echo "Hello world" > cs192 lab2/file03

denver:~$ cat cs192 lab2/file03

(output)

denver:~$ date > cs192 lab2/file03

denver:~$ cat cs192 lab2/file03

(output)

Question

6 What happened to the file file03 in the previous example?
A. It was filled with the output of both commands B. It was filled with the output
of the first command C. It was filled with the output of the first command, then
overwritten with the output of the second command D. An error was given after the
second command

Now issue the following two commands and notice how file03 changes.

denver:~$ echo "Hiya, world" >> cs192 lab2/file03

denver:~$ cat cs192 lab2/file03

(output)

Question

7 What does using the double greater-than sign (>>) do?
A. It prevents the first file from being overwritten B. It prompts the user with a
warning before overwriting the file C. It appended the output of the command to the
file given D. It resulted in an error

Lastly it is possible to use the output of one command as the input for another. Issue the
following two commands and note the affect.

denver:~$ ls /

(output)

denver:~$ ls / | wc

(output)

0.8 grep

Searching through large files is another task that you will likely be faced with at some time. The
command Linux provides to accomplish this is grep. This command takes a pattern, followed

5



by an arbitrary amount of files to search for the given pattern.

Try grep out with the following command.

denver:~$ grep hp ~info/machines

(lots of output)

denver:~$ grep hp ~info/machines | wc -l

23

denver:~$ grep -i hp ~info/machines

(lots of output, notice what else is being matched now)

denver:~$ grep -i hp ~info/machines | wc -l

552

Now try the following command, taking note that the -n flag is being used now.

grep -n hp ~info/machines

Question

8 What did using the -i flag appear to do to the grep command?
A. It made the search case-insensitive B. It inverted the match, making lines that
aren’t a match, a match C. It counted the total matches D. It is not a valid flag

9 What does the -n flag do to the grep command?
A. It displays the line number with the match B. It displays no output C. It
displays only matching lines, as they appear in the file D. It is not a valid flag

0.9 whoami

Many processes on the computer need to execute differently depending on who is executing it.
In Linux the command we use to check which user is logged in is whoami. Try it out on your
terminal, noting that the response will depend on your user name.

denver:~$ whoami

con

0.10 echo

We have seen a few uses for the echo command already, in this lab. Now that we know a few
more commands let’s see how to interpolate command output into the echo string. Type the
following two commands.

6



denver:~$ echo "My user name is whoami"

(output here)

denver:~$ echo "My user name is $(whoami)"

(output here)

Question

10 What did surrounding the whoami command with $(...) do inside the echo command?
A. It printed the literal string B. It substituted the output of whoami into the echoed
string C. It gave an error D. Everything inside the $(...) was ignored

0.11 find

Another common problem computer scientist face is finding files. Linux provides a very powerful
command for this called find. This command takes as arguments a base directory, options,
and arguments to the options for searching for the file. Issue the following command to search
for your index.html from your home directory.

denver:~$ find . -name "index.html"

./public html/index.html

Now use the touch command to create the file ~/public html/public html then issue the
following command.

find . -type f -name "public html"

Question

11 What does the -type f option and argument do to the find command?
A. Only matches directories B. Gives an error C. Looks for files starting with an ‘f’
D. Only matches files (not directories)

0.12 chmod

When using the command ls -l, one output section is the file permissions. Each file has owner,
group, and other permissions (and they appear in that order). The three possible permissions
are read (worth 4 points), write (worth 2 points) and execute (or search for directories) (worth
1 point). The sum of any three of these options will always be unique.

To change these permissions, we can use the chmod command. Try it out by issuing the
two following commands.

7



denver:~$ touch my new chmod

denver:~$ chmod 754 my new chmod

denver:~$ ls -l my new chmod

-rwxr-xr-- 1 con under 0 Sep 6 17:05 my new chmod

As we can see this file was given read, write, and execute permissions to the owner; read and
execute permissions to the group; and read permissions to everyone else.

Question

12 Which set of numbers would be accepted by chmod to allow the owner to read, write, and
execute the file; the group to only read and execute it; and everyone else to only execute
it?
A. 157 B. 764 C. 755 D. 751

Shell Scripting

Creating a Script

It can be useful to group commands into a script so that they may be run multiple times. A
script is just a collection of commands which are passed to the shell one at a time.

Let’s now create a script! Open a terminal, and in the home directory issue the following
command.

gedit my script &

Inside the gedit window type:

#!/bin/bash

echo "Hello, this is my first script"

Save the file (do not close it) and type the following into your terminal.

denver:~$ bash my script

Hello, this is my first script

denver:~$ chmod +x my script

denver:~$ ./my script

Hello, this is my first script

Once the script has been written it may be invoked in one of two ways. The first is by calling
a shell (such as bash) then listing the script file as an argument. The next method is to set the
execution bit of the file’s permissions. For this method we also have to let the computer know,

8



in the file, which shell to use. That is what the first line of the script does. The two methods
are shown by example above on the file named my script.

Notice that in the second example, when invoking a script in the same directory as you, a
dot forward slash proceeds the script name. This is to disambiguate the script from a shell
command.

Lastly shell scripts may have comments in them that do not effect the other code. Com-
ments start with a hash (#) sign (usually at the start of a line) and continue to the end of a
line.

# I am a comment and do not effect the script!

Add another line to your script with the following command.

echo "The person running this script is $(whoami)"

Save your script again, and run it using one of the two methods described above.

Assignment

Create a shell script that utilizes the following commands, with additional flags for at least
three, such as -l for ls -l. Also try to have some logical structure/purpose for the script.

1. date

2. ls

3. grep

4. Use of a pipe, |

5. echo

6. whoami

7. cat

8. wc

9. mkdir

10. touch

11. Redirection using > to create a file

12. Redirection using >> to append to a file

9


