Python Team Project

Large development projects are rarely done by one person alone. Instead most developers work
in teams. Thus, understanding how to divide up work and collaborate are essential to computer
programming.

In this project you will work in teams of two. To get started talk over the following points with
your teammate. It is also recommended that you put your division of work in writing as you
will need to turn in a summary of your team experiences.

e Introduce yourself.

e Share your computer background.

Discuss if you have common time to get together outside of class.

Review the materials for this assignment.

e Determine your strategy for completing the game. Example strategies are:

1.

7.

Assign different functions of the game to different team members, then integrate and
test.

Decide if you want to work on the same file, or work in separate files, combining
them as you go.

. Have one team member type the program, while working and discussing the imple-

mentation together.

Have one team member type the program, while working and discussing the imple-
mentation together. Halfway through switch roles.

. Have one team member implement, while another team member tests

. Be sure sure strategy includes how you will test the code, don’t wait until it is all

done to test.

Other ideas

To start, go to the assignment page and left click on the link titled rps.tar. Select the radio
button titled Save File then execute the following commands.

denver:~$ cd python_fun

denver:~/python_fun$ mkdir team project
denver:~/python_fun$ cd team project
denver:~/python_fun/team project$ mv ~/Downloads/rps.tar ./
denver:~/python_fun/team project$ tar xvf rps.tar
denver:~/python_fun/team project$ chmod +x rps.py
denver:~/python_fun/team project$ gedit rps_back.py &
denver:~/python_fun/team project$./rps.py

When you click Start Game in the window that appeared, the game should close and you
should get a message on you console that says “Not implemented yet.” This is OK, you will
add the implementation.

Some things to note, the ‘x’ in the top right corner of the game window does not always
work, instead use the “Quit” button in the bottom left corner to quit the game. Also we are
working with Python version 2.7 in this assignment because the libraries used were written in
this version. The only notable difference here is that the print function does not use parentheses
any more.

Project Description

For this project you will be implementing the back end for a Rock, Paper, Scissors game. This
means that you will write the part that actually handles the game. The front end (presentation
part) has already been implemented and you will use it as a library.

The file rps.py is the front end for the game. This is also the file that you will run from
the command line. This program will call your functions and depends on them working for a
fully functional game. You will not make any changes to the rps.py file. All changes you make
will be made to rps_back.py. You will also be using the library matplotlib, which we used
in the last lab.

Getting Started

The first function we will start with is instructions. The current code in this function is
shown below.

def instructions(response):
Add to instruction_string so that it contains information on
how to play rock-paper-scissors
instruction_string = ""

Use a string method to make response all one case
Use an if statement to check if the response is "yes"

If the user does want instructions pass instruction_string to
rps.print_instructions

To start, we need to fill instruction_string with the correct instructions for Rock, Paper,
Scissors. Add the following code to this function.

instruction_string = "Choose rock, paper, or scissors from the buttons. "

instruction_string += "The computer will then choose a move. "

instruction_string += "Rock beats scissors, scissors beats paper, and paper beats
rock."

Now that we have the instructions ready, we need to check the response. The response can be
in any case, but we should only display the instructions if they respond “yes.” Without having

to check all the combinations of casings, let’s just make the string all lower case and match
that with “yes.” Add the following line below the comment line that says: “Use a string ...”

response = response.lower ()

Finally we use an if statement and call rps.print_instructions if the response was yes. Add
the following line below the comment line that says “Use an if statement ...”
if response == "yes":

rps.print_instructions(instruction_string)

Now you need to test it to make sure it works! The play_match function is where the program
execution starts, so lets go to that function and add the following line to the beginning. Note
that this should be the first statement in the function.

rps.ask_instructions()

When any form of “yes” is entered you should see a screen with your instructions, any other
input should skip this screen and the game should close (because nothing else is implemented
yet). Test other cases to make sure that it is working well.

Now that you have a feel on how to make changes and test, continue to add implementation
for your game based on the strategy that you and your partner have decided on. Pay attention
to the order in which you add code to make sure you can test as you go along.

If you get lost, brainstorm with your partner, look at the rps_hints.py file on the assignment
page, look at previous python labs for this class, consult google, ask one of the instructors/class
helpers, come to office hours, look at the optional functions descriptions below. i.e. there are
lots of strategies for help!

Function Descriptions (optional clarifications)

0.1 playmatch
Your “main” function will be play match, which will be called almost immediately when you
run the rps.py program. Here you will need to call three separate functions from rps.
— rps.ask_instructions
This functions will prompt the user if they need instructions. Their response will be
passed along to your instructions function. There is not return value from this call.
— rps.get_name

This function prompts the user for their name, then calls your function titled check_name.
The return value is what you return from check_name.

— rps.get_num_play

This function prompts the user for how many times they would like to play. The re-
sponse is then passed to your check times_to_play function. The return value is what
you return from check_times_to_play.

It is recommended you implement the following functions, in the order presented, before fin-
ishing with play match.

0.2 instructions

This function takes one parameter, response. This variable contains the users response to the
prompt “Would you like instructions (yes/no): 7. If this response is “yes,” in any combination
of case, call rps.print_instructions, passing it a string variable which has instructions for
how to play Rock, Paper, Scissors.

0.3 check name

For this function you will need to check that the parameter name starts with an uppercase
letter, is of length greater than one and less than ten, and that it is only one name (i.e. no
spaces). If any of these requirements are not met call rps.quit_game, passing a string with an
appropriate error message. If the name is OK, then return it.

0.4 check times_to_play

This function is similar to check_name. You are passed a variable num which you must check
that it is greater than two and less than twenty one. If these requirements are not met call
rps.quit_game, passing a string with the error message. If the number is OK, then return the
integer version of it (it comes in as a string).

0.5 play_game

This function takes one parameter, the name of the player. You must get the players move by
calling rps.get_player_move, which will return a string of what the player chose. You then
must generate a move for the computer using the random.random function (note this returns a
decimal number from zero, inclusive, to one, exclusive).

Once you have the computers move and the players move, determine who one. Call rps.display_results
with a string that spans three lines, and describes the players move, the computers move, and

who won (or tied).

Finally, return a string describing who won.

0.6 playmatch

Once the other functions are working (and you can test them by calling them from this func-
tion) you will need to add the rest of the implementation for play match. This function will
call play_game the number of times that was received from rps.get_num play. Think about
how you can use a while loop to do this (or look up “for loop python” on google and use that).
You must keep a running tally of the number of times the player won, the computer won, and
ties.

At the end of the loop call make graph, with parameters for the name of the player, num-
ber of wins for the player, number of wins for the computer, and number of ties (in that exact
order).

0.7 make_graph

Using the parameters you must create a graph to appropriately display the results of the Rock,

Paper, Scissors game. The type of graph is up to you. Look to the last lab, or the link to the
documentation to get a template of how to make the graph.

Submission

When your code is working correctly refer to the assignment page for submission instructions.

