Put both your name and your lab section at the top of your submission.

1. [15 points] Use mathematical induction to show that whenever n is a positive integer:

$$
\frac{1}{1 * 3}+\frac{1}{3 * 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

a) What is the basis step?
b) What is the inductive step?
2. [20 points] Give a big-O estimate for each of these functions. For the function g in your estimate $f(x)$ is $O(g)$, use a simple function g of smallest order.
a. $6 x^{4}+3^{x}+12$
b. $2+4 x+8 x^{2}$
c. $\left(x^{3}+2 x\right) /(2 x+1)$
d. $\log x+27$
e. $\left(2^{x}+x^{2}\right)\left(x^{4}+3^{x}\right)$
3. [12 points] In the manner of Examples 1 and 2 from section 3.2 of the Rosen text, show that $4 x^{3}+12 x+8$ is $O\left(x^{4}\right)$. Give an explanation and values of C and k .
4. [15 points] For the following equation: $32 x^{4}+\left(\left(5 x^{2}+x\right)\left(13 x^{3}+1\right)\right)$
a. State the closest $g(x)$ for the equation.
b. Explain how the Big-O is computed given Theorems 1, 2 and 3 in Section 3.2 in Rosen.
5. [20 points] Assuming you use $\mathrm{k}=1$ as a witness, state whether the following functions are $O\left(x^{3}\right)$, and if so, state for what value of C .
a. 3^{x}
b. $10 x+42$
c. $2+4 x+8 x^{2}$
d. $(\log x+1)(2 x+3)$
e. $2 x+x$!
6. [18 points] Given the following algorithm, what is its Big-O? Justify your answer using the three theorems presented in the Complexity notes (and found in section 3.2 of Rosen). Assume the line "d" takes $\mathrm{O}(1)$ or $\mathrm{O}(\mathrm{c})$.
a. for (int $\mathrm{x}=1 ; \mathrm{x}<=\mathrm{n} ;++\mathrm{x}$) \{
b. for (int $\mathrm{y}=0 ; \mathrm{y}<\mathrm{n} ;++\mathrm{y}$) $\{$
c. for (int $\mathrm{z}=\mathrm{n} ; \mathrm{z}>\mathrm{n}-10 ;-\mathrm{z}$) \{
d. $\quad \mathrm{m}=\mathrm{m}$ * aArray $[\mathrm{x}]$ * bArray[y] * cArray[z];
e. $\}$
f. $\}$
g. \}

