CS200 Fall 2014 WA2 due 10/7/14 by 9:30AM

Put both your name and your lab section at the top of your submission.

1. [15 points] Use mathematical induction to show that whenever n is a positive integer:

$$\frac{1}{1*3} + \frac{1}{3*5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

- a) What is the basis step?
- b) What is the inductive step?
- 2. [20 points] Give a big-O estimate for each of these functions. For the function g in your estimate f(x) is O(g), use a simple function g of smallest order.
 - a. $6x^4 + 3^x + 12$
 - b. $2 + 4x + 8x^2$
 - c. $(x^3 + 2x)/(2x + 1)$
 - d. $\log x + 27$
 - e. $(2^x + x^2)(x^4 + 3^x)$
- 3. [12 points] In the manner of Examples 1 and 2 from section 3.2 of the Rosen text, show that $4x^3 + 12x + 8$ is $O(x^4)$. Give an explanation and values of C and k.
- 4. [15 points] For the following equation: $32x^4 + ((5x^2 + x)(13x^3 + 1))$
 - a. State the closest g(x) for the equation.
 - b. Explain how the Big-O is computed given Theorems 1, 2 and 3 in Section 3.2 in Rosen.
- 5. [20 points] Assuming you use k=1 as a witness, state whether the following functions are $O(x^3)$, and if so, state for what value of C.
 - a. 3^x
 - b. 10x + 42
 - c. $2 + 4x + 8x^2$
 - d. $(\log x + 1)(2x + 3)$
 - e. 2x + x!
- 6. [18 points] Given the following algorithm, what is its Big-O? Justify your answer using the three theorems presented in the Complexity notes (and found in section 3.2 of Rosen). Assume the line "d" takes O(1) or O(c).
 - a. for (int x = 1; $x \le n$; ++x) {
 - b. for (int y = 0; y < n; ++y) {
 - c. for (int z = n; z > n-10; --z) {
 - d. m = m * aArray[x] * bArray[y] * cArray[z];
 - e.

}

}

- f.
- g. }