Grammar Worksheet

Warm Up Exercises:

This exercise pertains to the tortoise and the hare from Aesop's Fables. The next three exercises refer to the grammar with: Start symbol (S) = sentence Set of terminals (T) = {the, sleepy, happy, tortoise, hare, passes, runs, quickly, slowly} Set of nonterminals (N) = {noun, phrase, transitive verb phrase, intransitive verb phrase, article, adjective, noun, verb, adverb} Productions (P) these are the rules associated with the grammar = sentence \rightarrow noun phrase, transitive verb phrase, noun phrase sentence \rightarrow noun phrase, intransitive, verb phrase noun phrase \rightarrow article, adjective, noun noun phrase \rightarrow article, noun transitive verb phrase \rightarrow transitive verb intransitive verb phrase \rightarrow intransitive verb, adverb intransitive verb phrase \rightarrow intransitive verb These are the valid words associated with the grammar: article \rightarrow the

article \rightarrow the adjective \rightarrow sleepy adjective \rightarrow happy noun \rightarrow tortoise noun \rightarrow hare transitive verb \rightarrow passes intransitive verb \rightarrow runs adverb \rightarrow quickly adverb \rightarrow slowly

(1) Use the set of productions to show that these are valid sentences: Example) The happy hare runs

sentenceintransitive verb phrasenoun phraseintransitive verb phrasearticle adjective nounintransitive verb phrasearticle adjective nounintransitive verbthe happyhareruns

a) The sleepy tortoise runs quickly

sentence	-	-		
noun phrase		intransitive verb phrase		
article adjective	noun	intransitive verb	ohrase	
article adjective	noun	intransitive verb	adverb	
The sleepy	tortoise	runs	quickly	

b) The tortoise passes the hare

sentence

→ noun phrase	transitive verb phrase	noun phrase

→ article	noun	transitive verb phrase	noun p	hrase
→ article	noun	transitive verb	noun p	hrase
→ article	noun	transitive verb	article	noun
the	tortoise	passes	the	hare

c) The sleepy hare passes the happy tortoise

sentence					
→ noun phrase		transitive verb phrase	noun p	hrase	
\rightarrow article adjective	noun	transitive verb phrase	noun p	hrase	
\rightarrow article adjective		transitive verb	noun p	hrase	
\rightarrow article adjective	noun	transitive verb	article	adjective	
the sleepy	hare	passes	the	happy	tortoise

(2) Find three additional valid sentences:

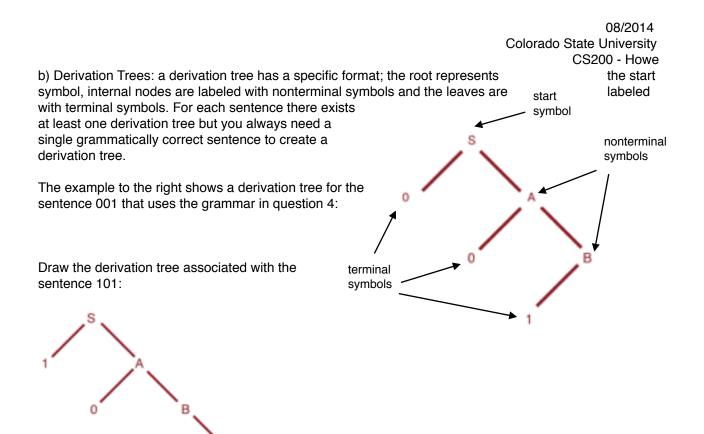
Several possible answers. Some of these answers include: The sleepy hare runs quickly The hare passes the tortoise The happy hare runs slowly The happy tortoise passes the hare The hare passes the happy hare

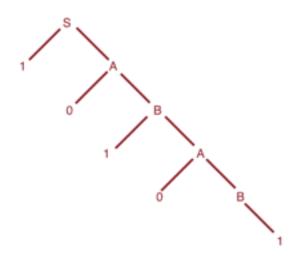
(3) Show that "the hare runs the sleepy tortoise" is not a valid sentence:

The only way to get a noun, such as tortoise, at the end is to have a noun phrase at the end, which can be achieved only via the production:

sentence

noun phrase transitive verb phrase noun phrase


However, the only valid transitive verb we have is "passes" (runs is an intransitive verb). Thereby this sentence is not valid within the grammar defined.


In Recitation Exercises:

(4) Let G = (V, T, S, P) be the grammar with V = {0, 1, A, B, S}, T = {0,1}, and set of productions P consisting of S \rightarrow 0A, S \rightarrow 1A, A \rightarrow 0B, B \rightarrow 1A, B \rightarrow 1 a) What is the language generated by G?

All strings consisting of a 0 or a 1 followed by one or more repetitions of 01

Draw the derivation tree associated with the sentence 10101:

(5) Let V = {S,A,B,a,b} and T = {a,b}. Find the language generated by the grammar (V,T,S,P) when the set P of productions consists of: a) $S \rightarrow AB$, $S \rightarrow aA$, $A \rightarrow a$, $B \rightarrow ba$ This time there are only two possible strings: {aa, aba}

b) $S \rightarrow AA, S \rightarrow B, A \rightarrow aaA, A \rightarrow aa, B \rightarrow bB, B \rightarrow b$

If $S \rightarrow AA$ is applied then the string results must be N number of a's where N is an even number greater or equal to 4 since each A because a positive even number of As

If $S \rightarrow B$ is applied then the result is a string of one or more b's

Therefore the language is { $A^{2n} | n \ge 2$ } \cup { $b^n | N \ge 1$ }

(6) Find the grammar for the language with the set of all bit strings containing an even number of 0s and no 1s:

 $\langle S \rangle = 00 \langle S \rangle | \lambda$

alternatively: $\langle S \rangle = 00 \langle A \rangle$ $\langle A \rangle = 00 \langle A \rangle | \lambda$

a) the set consisting of the strings 0, 11, and 010

<S> = 0 | 11 | 010

b) the set of strings of three 0s followed by two or more 0s

<S> = 0000<A> <A> = 0<A> | 0

c) the set of strings that contain any number of 0s and exactly one 1

 $\langle S \rangle = 0 \langle S \rangle | 1 \langle A \rangle$ $\langle A \rangle = 0 \langle A \rangle | \lambda$

d) The set of odd-length strings whose first, middle, and last characters are all the same, over the alphabet {0,1} (Some examples include: 000, 01000, 10111, 1011)

<S> = 0<A>0 | 11 | 0 | 1 <A> = 0<A>0 | 0<A>1 | 1<A>0 | 1<A>1 | 0 = 00 | 01 | 10 | 11 | 1

(7) A palindrome is a string that reads the same backward as it does forward, that is, a string w, where $w = w^R$, where w^R is the reversal of the string w. Find that grammar that generates the set of odd length palindromes over the alphabet {a,b}:

```
< pal > = < ch > | a < pal > a | b < pal > b 
<math>< ch > = a | b
```