More About Induction

Recitation 4

Example - Induction in excruciating detail

I will admit to getting this example from Wikipedia [1], but it is a good place to start. The following is the formula, called $\mathrm{p}(\mathrm{n})$, for the summation of natural numbers:

$$
0+1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Basis step: Show that it holds for $\mathrm{n}=0$

$$
\begin{gathered}
0=\frac{0 *(0+1)}{2} \\
0=\frac{0}{2}=0
\end{gathered}
$$

Start with only 0 on the left side, and $n=0$ on the right side of the previous equation. Do the arithmetic and if the left side equals the right side, you have proved the basis. Or show that $p(0)$ holds, depending on your terminology.

Inductive Step: We now need to show this if $p(k)$ holds, then $p(k+1)$ also holds. See later note about n and k . Assume that $p(k)$ holds, for some unspecified value of k. What we want to show is that $p(k+1)$ holds:

$$
(0+1+2+\ldots+k)+(k+1)=\frac{(k+1)((k+1)+1)}{2}
$$

Notice what was done here. The left side started out the same as the left side of the very first equation, and then had $\mathrm{a}^{\prime}(k+1)^{\prime}$ added to it. The right side started out the same as the right side of the very first equation. Then, every k was robotically replaced with $\mathrm{a}^{\prime}(k+1)^{\prime}$.

We already have a formula for $p(k)$, from the original equation. We can substitute that for the ${ }^{\prime}(0+1+2+\ldots+k)^{\prime}$ term above:

$$
\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)((k+1)+1)}{2}
$$

What we must now do is make the left side match the right side.

$$
\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)((k+1)+1)}{2}
$$

$$
\begin{gathered}
\frac{k^{2}+3 k+2}{2}=\frac{(k+1)((k+1)+1)}{2} \\
\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2} \\
\frac{(k+1)((k+1)+1)}{2}=\frac{(k+1)((k+1)+1)}{2}
\end{gathered}
$$

Left now equals right, we are done. We have shown that $p(k+1)$ holds by showing that the left and right sides of the original equation are still equivalent in the $(k+1)$ case just like they were for k .

About \mathbf{k} and \mathbf{n}, the notation changes depending on which part of the problem is being done. n is usually used for describing the original equation. k is used during the algebra for the inductive step, but it is the same variable renamed. I think this is to create visual distinction between the original equation and the later algebra work. For our purposes $n==k$.

Exercise for today:

The work sheet with more induction practice. This is also your attendance sheet, show it to me when you are done or at the end of the recitation and I will record attendance. You may keep the worksheet if your want to.

Optional extra problem:

If you are done with the worksheet with time to spare, and want to do some programming, try this problem. It's not worth any points, but it's good practice.

- Look up the Lucas Numbers on Wikipedia: http://en.wikipedia.org/wiki/Lucas_number
- This is a series of numbers similar to the Fibonacci series.
- Make a new eclipse project, and write a recursive function which computes the $n^{\text {th }}$ Lucas Number.
- This description has been left intentionally vague

