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More on Big O Notation
Eyeballing code
The process of looking at a piece of code and determining it’s big O complexity is more intuitive than
mechanical. Generally, you should look for where most of the work is being done, and/or for code that runs
many times. Next you should think about how many times the code will run for input of a give size (n), and
maybe trace out a small example. This should give you an idea of how to express the number of code cycles
in terms of the size of it’s input.

As an example, lets look at the traveling salesman problem. Finding the shortest route for a salesman to
visit n cities. Each city is visited only once, and they can be visited in any order. Brute force computation
of this problem is to compute all possible routes and then find the lowest distance. Adding up distance
between cities is a constant time operation, so we will focus on enumerating all possible routes:

//arguments are two lists of cities

method trav_sales(visited, notVisited){

if(notVisited is empty)

return visited;

list results;

for (x is a city in notVisited){

list temp = visited + x;

list notV = remove x from notVisited;

results.append(trav_sales(temp, notV)); //recursive call

}

return results;

}

Here we have a loop which contains a recursive call:

• Loop runs n times. After 1 recursion, loop runs n-1 times. After two recursions, loop runs n-2 times,
etc...

• First time through the loop, n recursive calls are made. Each one has an n-1 loop, so it has n-1
operations done n times. You can think of it as a nested loop (where the inner loop skips an element)
if you want.

• So far it looks like n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 1, which is n factorial (n!). This makes a bit of sense, since
every time a city is cisited, there are fewer cities which still need to be visited.

• I tried a few small inputs. For n = 3, there would be 6 routes (3! = 6). For n = 4 there were 24 routes
(4! = 24). So n! does seem to be a good representation of how much looping it does. Since it does not
do much else, it’s probably O(n!)

• I looked this one up, brute force solutions to the traveling salesman problem really are O(n!)

Proofs
Other problems ask us to prove that f(x) is O(g(x)), where f and g are mathematical functions. Remember
the official definition of big O: |f(x)| ≤ C|g(x)|, whenever x > k. I actualy like the book’s technique for this,
so here’s an example:

Show that 6x2 + 2x + 3 is O(x3)
Start by writing down f(x) ≤ f(x) ... no, really, stay with me! We get:

1



6x2 ≤ x3 for x > 6

Now, we want to make the right hand side look as like g(x) as we can. To do this, we make some observations.
Specifically, one about each term in the original function, relating it to g(x):

6x2 ≤ x3, for x > 6
x ≤ x3 for x > 2 3 ≤ x3, for x > 2

How did I find these? By means of substitutions starting from 0 to 1, we can determine the point where this
holds true. Based on these observations, when x is greater than 6 every term in the original function is less
that x3. So we can rewrite the original in equality as:

6x2 + 2x + 3 ≤ 6x3 + 2x3 + 3x3

I literally just made every term in the right side an x3 term! In fact, we can remove the coefficients on the
right side, the inequality still holds:

6x2 + 2x + 3 ≤ x3 + x3 + x3

6x2 + 2x + 3 ≤ 3x3

This now looks a lot like the definition, |f(x)| ≤ C|g(x)|, with c = 3 and k = 6 (these are the witness
variables. C from the previous equations, and K is the highest bound on x from our observations above. We
can now say that:

6x2 + 2x + 3 is O(x3) with witness: c = 3 and k = 6.

Exercise
Two worksheets on complexity.
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