Fall 2014

Recurrence Relations
Recitation 9

1 Definition

A recurrence relation for the sequence { a, } is an equation that expresses { a, } in terms of one or more
of the previous terms for all integers n with n > ng where ng is a nonnegative number.

Translation:

This is simply a recursive function or a function that is defined by itself. The most common example
are the Fibonacci numbers: 0,1,1,2,3,5,8,13,21,34,... The pattern is f(n) = f(n — 1) + f(n — 2) where
f(0) =0, f(1) = 1. In order to calculate f(n) we must first For example:

f4)=f4-1)+g(4-2)
f4) =13+ 1)

In order to solve f(4) we need f(3) and f(2):

f@Q)=f2-n+f2-2
f2)=0+1=1

fB)=fB-1D+f(3-2)
fG3)=f(2)+ f1)
fB)=1+1=2

f4)=f3)+ f(2)
f4)=2+1=3

2 Solving with back substitution

Plug the recurrence back into itself over and over until you can see a pattern. Let’s do an example with
merge sort algorithm.

We start with n elements and |38|27| 43| 3 l 9 { 82| 10|

recursively split our array until / \
everything is an array of size 1
l38 27%43 3] IS BZLIO]
[3s[er] [a]3] [sls2] 0]
/ 7 [!
» P \ \ 4 An array of size 1 is
| 38 { 27 I | 43 | | | I g ‘ { 22 | 10 | sorted so all that is left

is to merge each

\ \
sorted array
27 ,KI 3 43 ﬁ

. /

We merge by comparing the first [3|27 38]?] I 9 1orsz]
element in each array and
choose the smallest one to be the

next element in the new array | 3 [9 | 10 27] 38[43| 82 |

—-.

At each level we recurse twice for each array and each time we recurse on half of the array. This gives us
the start of our recurrence relation: n
fo =2+ (3)

Once we hit out base case, f(1) = 1, all that is left is to merge the arrays at each level together. Since at
each level there are ultimately still n elements this will require n comparisons. So our final recursive relation
for merge sort will look like this:

f(n):2*f(g>+n

To solve this recurrence relation, we will start plugin f(n) to itself until we can recognize a pattern:

f(n):2*f(g>+n

f(n)zQ*(?*f(%)—i—%n)—i—n
fm) =ax1(F)+2n

f(n):4*<2*f(g>+in)+2n
fm) =81 (%) +3n
f(n):16*f(16>+4n

There is a pattern that we can recognize here:

fm) =25 f (5¢) +kn

So this pattern will continue until we hit our base case of f(1) = 1. This implies gz = 1, therefore n = 2k,
and k = logon. This gives us:

f(n) =loga(n) * 1+ loga(n) xn
From here we can also determine a big-O bound on the number of steps in merge sort by finding the big-O

of the above function.
O(n = log(n))

