
Fall 2014

Recurrence Relations
Recitation 9

1 Definition

A recurrence relation for the sequence { an } is an equation that expresses { an } in terms of one or more
of the previous terms for all integers n with n ≥ n0 where n0 is a nonnegative number.

Translation:
This is simply a recursive function or a function that is defined by itself. The most common example
are the Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... The pattern is f(n) = f(n − 1) + f(n − 2) where
f(0) = 0, f(1) = 1. In order to calculate f(n) we must first For example:

f(4) = f(4− 1) + g(4− 2)

f(4) = f(3) + f(2)

In order to solve f(4) we need f(3) and f(2):

f(2) = f(2− 1) + f(2− 2)

f(2) = 0 + 1 = 1

f(3) = f(3− 1) + f(3− 2)

f(3) = f(2) + f(1)

f(3) = 1 + 1 = 2

f(4) = f(3) + f(2)

f(4) = 2 + 1 = 3

2 Solving with back substitution

Plug the recurrence back into itself over and over until you can see a pattern. Let’s do an example with
merge sort algorithm.

1

At each level we recurse twice for each array and each time we recurse on half of the array. This gives us
the start of our recurrence relation:

f(n) = 2 ∗ f
(n

2

)
Once we hit out base case, f(1) = 1, all that is left is to merge the arrays at each level together. Since at
each level there are ultimately still n elements this will require n comparisons. So our final recursive relation
for merge sort will look like this:

f(n) = 2 ∗ f
(n

2

)
+ n

To solve this recurrence relation, we will start plugin f(n) to itself until we can recognize a pattern:

f(n) = 2 ∗ f
(n

2

)
+ n

f(n) = 2 ∗
(

2 ∗ f
(n

2

)
+

1

2
n

)
+ n

f(n) = 4 ∗ f
(n

4

)
+ 2n

f(n) = 4 ∗
(

2 ∗ f
(n

8

)
+

1

4
n

)
+ 2n

f(n) = 8 ∗ f
(n

8

)
+ 3n

f(n) = 16 ∗ f
(n

16

)
+ 4n

...

There is a pattern that we can recognize here:

f(n) = 2k ∗ f
(n

2k

)
+ kn

So this pattern will continue until we hit our base case of f(1) = 1. This implies n
2k

= 1, therefore n = 2k,
and k = log2n. This gives us:

f(n) = log2(n) ∗ 1 + log2(n) ∗ n
From here we can also determine a big-O bound on the number of steps in merge sort by finding the big-O
of the above function.

O(n ∗ log(n))

2

