Graphs

Recitation 13

Basic Terminology:

Graphs represent relationships among data items. They are comprised of a set of V, vertices (nodes), and a set of \mathbf{E}, edges. Each edge represents a connection between two vertices.

Use the class notes or Rosen/Prichard define the following terms:
Adjacent:

Incident:

Path:

Simple path:

Cycle:

Connected:

Strongly connected:

Connected components:

Weakly connected:

Complete:

Degree:

Indegree:

Outdegree:

Representations of Graphs:

Adjacency matrix: Typically represented as an array of arrays. The two examples below correspond to an unweighted undirected graph and an unweighted directed graph. 1 corresponds to an edge being present and a 0 corresponds to no edge being present. Notice how in a directed graph if $a \rightarrow b$ then matrix $[a][b]=1$ and matrix $[b][a]=0$.
Adjacency list: Typically represented as a List of Lists. Each node has a corresponding list of all the nodes it is connected with. Notice how in the directed graph is $a \rightarrow b$ then a contains b in its list but b does not contain a.

Representation of an undirected graph

(a) undirected graph

				c	d	e	f		g	h	
			1	0	0	0				0	
				1	0	1				0	0
	0			0	1	1				0	0
				1	0	0				1	0
	0			1	0	0					0
				0	0	0					0
	0					1					0
				0		0					
	1		0	0	0	0	0		0	0	

(b) adjacency matrix representation

a	$\rightarrow \mathrm{b} \rightarrow \mathrm{f} \rightarrow \mathrm{i}$	
b	$\rightarrow \mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{e}$	
c	$\rightarrow \mathrm{b} \rightarrow \mathrm{d} \rightarrow \mathrm{e}$	
d	$\rightarrow \mathrm{c} \rightarrow \mathrm{g} \rightarrow \mathrm{h}$	
e	$\rightarrow \mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{g}$	
f	$\rightarrow \mathrm{a} \rightarrow \mathrm{g}$	
g	$\rightarrow \mathrm{d} \rightarrow \mathrm{e} \rightarrow \mathrm{f}$	
h	$\rightarrow \mathrm{d}$	
i	$\rightarrow \mathrm{a}$	

(a) directed graph

			b	c	d	e	f		g	h		i
			0	0	0	0	0		0	0		17
b	1	1	0	1	0	0	0		0	0	0	0
	0	0	0	0	1	0	0		0		0	0
	d 0	0	0	0	0	0	0		0	1		0
	0	0	1	0	0	0	0		0	0	0	0
	f 0	0	0	0	0	0	0		0	0		0
	g 0	0	0	0	0	1	1		0	0		0
	\%	0	0	0	0	0	0		0			0
	0	0	0	0	0	0	0		0			0

(b) adjacency matrix representation

Representation of an directed graph

a	$\rightarrow \mathrm{i}$
b	$\rightarrow \mathrm{a} \rightarrow \mathrm{c}$
c	$\rightarrow \mathrm{d}$
d	$\rightarrow \mathrm{h}$
e	$\rightarrow \mathrm{b}$
f	
g	$\rightarrow \mathrm{d} \rightarrow \mathrm{e}$
h	
i	

(c) adjacency list representation

Additional Problems:

1. Now consider the previous representations would change if the graph is weighted.

Give the adjacency list and the adjacency matrix for the following graphs:

(a) graph 1

Adjacency Matrix for Graph 1:

(b) graph 2

Adjacency List for Graph 1:
2. Answer the following questions pertaining to graph 1 and 2 :
(a) Both graphs: is the adjacency matrix be symmetrical? When is an adjacency matrix symmetrical?
(b) Both graphs: what does the sum of each row of the adjacency matrix represent?
(c) Graph 1: List the degree of each of the nodes
(d) Graph 2: List the indegree and outdegree of each of the nodes
3. Would an adjacency matrix or an adjacency list be a better implementation for the following graph operations? Please explain your answer:

- Determine whether there is an edge from vertex i to vertex j
- Find all the vertices adjacent to a given vertex i

4. Find all the strongly connected components (SCC's) in this digraph:

(a) graph 3
5. Identify:
(a) the number of vertices:
(b) the number of edges:
(c) the degree of each vertex:
(d) isolated vertices
(e) pendent vertices

(a) graph 4
6. Find the sum of the degrees of vertices and verify that it equals twice the sumer of edges in the graph.
7. Can a simple graph exist with 15 vertices each of degree five?
8. Identify:
(a) the number of vertices
(b) the number of edges
(c) the in-degree and out-degree of each vertex

(a) graph 5
9. next to each vertex show write the in-degree and the out degree. Sum these up and show that they are both equal to the number of edges in the graph.
10. Draw the following graphs:
(a) C_{7}
(b) $K_{4,4}$
11. What does bipartite mean:

Determine whether the following graph is bipartite

(a) graph 5
12. For which values of n is this graph bipartite?
(a) K_{n}
(b) C_{n}
(c) W_{n}
(d) Q_{n}

(a) graph 7
13. How many vertices and how many edges do these graphs have?
(a) K_{n}
(b) C_{n}
(c) W_{n}
(d) $K_{m, n}$
(e) Q_{n}

