
1

 CS200: Advanced OO in Java

CS200 - Advanced OO 1

Object Oriented Programming

n  Programming paradigm using “Objects” : data
structures consisting of data fields and
methods together with their interaction.

n  Object?
n  Class?
n  Interface?
n  Package?

2 CS200 - Advanced OO

Basic Components
a software bundle of related states
(properties, or variables) and behavior
(method)
n  State is stored in fields
(variables in some
programming languages)
n  Method exposes
object’s behavior.

3

Time
Alarm time

Set the time

Set the alarm

Enable the alarm

Sound the alarm

Silence the alarm

Show the time

Properties

Methods

CS200 - Advanced OO

Basic Components

n  Class: Blueprint from which objects are
created
q  Multiple Instances created from a class

n  Interface: A Contract between classes and
the outside the world.
q  When a class implements an interface, it

promises to provide the behavior published by
that interface.

4 CS200 - Advanced OO

2

Basic Components

n  Package: a namespace for organizing
classes and interfaces

5 CS200 - Advanced OO

Data Encapsulation

n  An ability of an object to be a container (or
capsule) for related properties and methods.
q  Preventing unexpected change or reuse of the

content
n  Data hiding

q  Object can shield variables from external access.
n  Private variables
n  Public accessor and mutator methods

6 CS200 - Advanced OO

Data Encapsulation
public class Clock!
{!
!private long time, alarm_time;!
!private String serialNo;!

!
!public void setTime(long _time){!
!time = _time;!
!}!
!public void setAlarmTime(long_time){!
! ! !alarm_time = _time;!
!}!
!public long getTime(){return time}!
!public long getAlarmTime(){return alarm_time}!

 public void noticeAlarm(){ ring alarm } !
!protected void set serialNo(String _serialNo){…}!

} !
!

7 CS200 - Advanced OO

Inheritance

n  The ability of a class to derive properties
from a previously defined class.

n  Relationship among classes.
n  Enables reuse of software components

q  e.g., java.lang.Object()
q  toString(), notifyAll(), equals(), etc.

8 CS200 - Advanced OO

3

Example: Inheritance

clock

Sports
Watch

Radio
Clock

9 CS200 - Advanced OO

Example: Inheritance – cont.

10

Public class SportsWatch extends Clock!
{!
 private long start_time; !
 private long end_time;!
!
 public long getDuration()!
 {!
 return end_time - start_time;!
 }!!
!
} !
!

CS200 - Advanced OO

Overriding Methods

11

public class RadioClock!
{!
!@override!
 public void noticeAlarm(){!
 ring alarm !
 turn_on_the_Radio!
 }!!
} !
!

CS200 - Advanced OO

Java Access Modifiers

n  Keywords: public, private,and
protected!

n  Control the visibility of the members of a class
q  Public members: used by anyone
q  Private members: used only by methods of the class
q  Protected members: used only by methods of the

class, methods of other classes in the same package,
and methods of the subclasses.

q  Members declared without an access modifier are
available to methods of the class and methods of
other classes in the same package.

12 CS200 - Advanced OO

4

Polymorphism

n  “Having multiple forms”
n  Ability to create a variable, or an object that

has more than one form.

13 CS200 - Advanced OO

 Polymorphic method
RadioClock myRadioClock = new RadioClock();!
Clock myClock = myRadioClock;!
myClock.notifyAlarm();!

14

A: Clock
B. RadioClock

CS200 - Advanced OO

Dynamic Binding

n  The version of a method “notifyAlarm()”
is decided at execution time. (not at
compilation time)

15 CS200 - Advanced OO

Abstract

n  A special kind of class that cannot be
instantiated.

n  It allows only other classes to inherit from it.
n  It enforces certain hierarchies for all the

subclasses

16 CS200 - Advanced OO

5

Interface

n  An Interface is NOT a class.
n  An Interface has NO implementation inside.

q  Definitions of methods without body.

17 CS200 - Advanced OO

Comparison-1

18

Feature Interface Abstract Class
Multiple inheritance A class may inherit

several interfaces
Only one

Default
implementation

Cannot provide any
code

Can provide complete,
default code and/or
just the details that
have to be overridden.

Access Modifier Cannot have access
modifiers. (everything
is assumed as public)

Can have it.

CS200 - Advanced OO

Comparison-2

19

Feature Interface Abstract Class

Adding functionality
(Versioning)

For a new method, we
have to track down
all the
implementations of
the interface and
define implementation
for the new method

For a new method, we
can provide default
implementation and
all the existing code
might work properly.

Fields and
Constants

No fields can be
defined in interfaces

Fields and constants
can be defined

CS200 - Advanced OO

