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Divide and Conquer Algorithms: 
Advanced Sorting 

Prichard Ch. 10.2: Advanced Sorting 
Algorithms 

(revisit) Properties of Growth-rate 
functions(1/3) 
1.  You can ignore low-order terms in an 

algorithm's growth-rate function.  

n  O(n3+4n2+3n) it is also O(n3)	
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(revisit) Properties of Growth-rate 
functions(2/3) 
2.  You can ignore a multiplicative constant in 

the high-order term of an algorithm’s growth-
rate function 

n  O(5n3), it is also O(n3)	
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(revisit) Properties of Growth-rate 
functions (3/3) 
3.  You can combine growth-rate functions 

n  O(n2) + O(n), it is also O(n2+n)	

n  Which you write as O(n2) 	
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Examples 

Find a growth function that has the best 
estimation of O(x2).	


A. f(x) = 17x + 11	

B. f(x) = x2 + 1000	

C. f(x) = xlogx	

D. f(x) = x4/2	

E. f(x) = 2x	
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Demonstrating Efficiency 

n  Computational complexity of the algorithm 
q  Time complexity  

q  Space complexity 
n  Analysis of the computer memory required  
n  Data structures used to implement the algorithm 
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Best, Average, and Worst Cases 

n  Worst case 
q  Just how bad can it get:  

n  The maximal number of steps 

n  Average case 
q  Amount of time expected “usually” 

n  Best case  
q  The smallest number of steps   
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Sequential Search 

 

n  Array of n items 
q  From the first one until either you find the item or 

reach the end of the array. 
q  Best case: O(1) 
q  Worst case: O(n) (n times of comparison) 
q  Average case: O(n) (n/2 comparison) 
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Binary Search  (1/4) 

n  Searches a sorted array for a particular item by repeatedly 
dividing the array in half. 

n  Determines which half the item must be in and discards other 
half. 

n  Suppose that n = 2k for some k. (n=1,2,4,8,16,…) 
1.  Inspect the middle item of size n 
2.  Inspect the middle item of size n/2 
3.  Inspect the middle item of size n/22 

4.  . 
5.  . 
6.  . 
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10 11 13 15 16 20 22 39 40 45 90 92 93 94 
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Binary Search  (2/4) 

10 

n items 

n/2 items 
n/22 items 

n/23 items 

If we have n = 2k, in worst case, it will repeat this k times 

The last item  
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Clicker Q 

n  What is the worst case for binary search? 
A.  Item is at the end of the array 
B.  Item is at the beginning of the array 
C.  Item is not in the array 
D.  The array is not sorted 
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Binary Search  (3/4) 

n  Dividing array in half k times.  

n  Worst case 
§  Algorithm performs k divisions and 

    k comparisons. 

§  Since n = 2k , k = log2n 

§  O(log2n) 
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Binary Search (4/4) 

n  What if n is not a power of 2? 

n  We can find the smallest k such that, 

2k-1 <  n  < 2k 

k - 1 <  log2n < k 
k< 1 + log2n < k+1 
k = 1 + log2n rounded down 

Therefore, the algorithm is still O(log2n). 
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Is Binary Search is more Efficient than 
Linear Search?   (1/2)  
n  For large number, O(log2n) requires 

significantly less time than O(n)   

n  For small numbers such as n < 25, does not 
show big difference. 
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Is Binary Search is more Efficient than 
Linear Search? (2/2)     
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Sorting Algorithm 

n  Organize a collection of data into either 
ascending or descending order. 

n  Internal sort  
q  Collection of data fits entirely in the computer’s 

main memory 

n  External sort 
q  Collection of data will not fit in the computer’s 

main memory all at once. 

n  We will only discuss internal sort. 
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Aside: Sorting Redux from 161 

n  Simple Sorts: Bubble, Insertion, Selection 
n  Doubly nested loop 
n  Outer loop puts one element in its place 
n  It takes i steps to put element i in place  

q  n-1 + n-2 + n-3 + … + 3 + 2 + 1 
q  O(n2) complexity 
q  In place   
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Mergesort 

n  Recursive sorting algorithm 

n  Gives the same performance 

n  Divide-and-conquer 
q  Step 1. Divide the array into halves 
q  Step 2. Sort each half 
q  Step 3. Merge the sorted halves into one sorted 

array 

18 
CS200 Advanced Sorting 

19 

36 16 27 39 12 27 

36 16 27 39 12 27 

36 16 27 39 12 27 

16 36 12 39 

16 27 36 12 27 39 

12 16 27 27 36 39 

36 16 12 39 
Merge Steps 

Recursive calls  
to mergesort 

If there is only 
ONE item, it is 

sorted! 
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MergeSort code 
public static void mergesort(Comparable[] theArray, int first, int 

last){
// Sorts the items in an array into ascending order.      

  // Precondition: theArray[first..last] is an array. 
  // Postcondition: theArray[first..last] is sorted.  
if (first < last) {
 int mid = (first + last) / 2;  // midpoint of the array
 mergesort(theArray, first, mid);
 mergesort(theArray, mid + 1, last);
 merge(theArray, first, mid, last);
}// if first >= last, there is nothing to do

}

why does it work? CS200 Advanced Sorting 
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36 16 27 39 12 27 

36 16 27 39 12 27 

36 16 27 39 12 27 

16 36 12 39 

16 27 36 12 27 39 

12 16 27 27 36 39 

36 16 12 39 
Merge Steps 

Recursive calls  
to mergesort 

Mergesort (0,2) Mergesort (3,5) 

Mergesort (0,1) Mergesort(2,2) 
Mergesort (3,4) Mergesort (5,5) 

Mergesort (0,5) 

Mergesort (0,0) Mergesort(1,1) 
Mergesort(3,3) Mergesort (4,4) 

Merge(0,1) 

Merge(0,2) 

Merge(3,4) 

Merge(3,5) 

Merge(0,5) 
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Clicker Q 

n  How many times was MergeSort called? 
A.  1 
B.  6 
C.  10 
D.  20 
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Merge code I 
private static void merge (Comparable[] theArray, Comparable[] 

tempArray, int first, int mid, int last({!

  int first1 = first;!
  int last1 = mid;!
  int first2 = mid+1;!
  int last2 = last;!
  int index = first1;   // incrementally creates sorted array!
!
  while ((first1 <= last1) && (first2 <= last2)){!
    if( theArray[first1].compareTo(theArray[first2])<0) {!
      tempArray[index] = theArray[first1];!
      first1++;!
    }!
    else{!
      tempArray[index] = theArray[first2];!
      first2++;!
    }!
    index++;!
  } !
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Merge code II  
!// finish off the two subarrays, if necessary  !
!while (first1 <= last1){!

    tempArray[index] = theArray[first];!
    first1++;!
    index++;  }!
  while(first2 <= last2)!
    tempArray[index] = theArray[first2];!
    first2++;!
    index++;  }!
  for (index = first; index <= last: ++index){!
    theArray[index ] = tempArray[index];!
  }!
} //end merge!

24 
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Mergesort Complexity 

n  Analysis 
q  Merging:  

n  for total of n items in the two array segments, at most 
n -1 comparisons are required. 

n  n moves from original array to the temporary array. 

n  n moves from temporary array to the original array. 

n  Each merge step requires 3n – 1 major operations 

25 
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Mergesort: More complexity 

n  Each call to mergesort recursively calls 
itself twice.  

n  Each call to mergesort divides the array 
into two. 

q  First time: divide the array into 2 pieces 
q  Second time: divide the array into 4 pieces 
q  Third time: divide the array into 8 pieces 
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Mergesort Levels 
n  If n is a power of 2 (i.e. n = 2k), then the 

recursion goes k = log2n levels deep.  

n  If n is not a power of 2, there are 1 + log2n 
(rounded down) levels of recursive calls to 
mergesort. 

27 
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Mergesort Operations 
n  At level 0, the original call to mergesort calls 

merge once. (requires 3n – 1 operations) 

n  At level 1, two calls to mergesort and each of 
them will call merge. 
q  Total 2 * (3 * (n/2) – 1) operations required 

n  At level m, 2m calls to merge occur. 
q  Each of them will call merge with n/2m items and each 

of them requires 3(n/2m)-1 operations. Together, 
3n-2m operations are required. 

n  Because there are log2n or 1+log2n levels, total 
O(n*log2n) 

28 
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Mergesort Computational Cost 

n  Since there are either log2n or 1+log2n levels, 
mergesort is O(n*log2n) in both the worst 
and average cases.  

n  Significantly faster than O(n2)	
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Clicker Q 

n  Is MergeSort O(nlogn) in the best case? 
A.  Yes 
B.  No 
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Stable Sorting Algorithms 

n  Suppose we are sorting a database of users 
according to their name.  Users can have identical 
names.!

n  A stable sorting algorithm maintains the relative 
order of records with equal keys (i.e., sort key 
values). Stability:  whenever there are two records R 
and S with the same key and R appears before S in 
the original list, R will appear before S in the sorted 
list."

n  Is mergeSort stable?"
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Quicksort 

1.  Select a pivot item. 
2.  Subdivide array into 3 parts 

•  Pivot in its “sorted” position 
•  Subarray with elements < pivot 
•  Subarray with elements >= pivot  

3.  Recursively apply to each sub-array 

32 
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Invariant for partition 
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P 

first 

< P >= P ? 

last firstUnknown lastS1 

S1 S2 Unknown Pivot 

Initial state of the array 
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P 

first 

? 

last firstUnknown 

lastS1 

Unknown Pivot 
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Lecture 12: 10/2/14 
n  Grammars (Prichard Ch. 6.2, Rosen Ch. 13.1) 
n  Stacks (Prichard Ch. 7) 
n  Recursion (Prichard Ch. 6.1 & 6.3)  
n  Queues (Prichard Ch. 8) 
n  Complexity (Rosen Ch. 3.2, 3.3, Prichard 10.1) 
n  Advanced Sorting (Prichard 10.2) 

n  PA2 LATE PERIOD. 
n  WA2 due 10/7 @ 9:30 
n  Midterm 1 on 10/9 
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Today’s Trivial Participation Quiz:  
Which password was *not* on 2014 25 Most Common Passwords list? 
a.   letmein 
b.   trustno1 
c.   monkey 
d.   guessit 

Quicksort Key Idea: Pivot 

36 

 < p  
p  >= p 

                                        

 < p1  p1  >= p1  < p2  p2  >= p2 
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Clikcer Q 

n  An invariant for the QuickSort code is: 
A.  After the first pass, the P< partition is fully 

sorted. 
B.  After the first pass, the P>= partition is fully 

sorted.  
C.  After each pass, the pivot is in the correct 

position. 
D.  It has no invariant. 

37 
CS200 Advanced Sorting 

QuickSort Code 

 public static void quickSort(Comparable[] theArray, int first, 
   int last) {

int pivotIndex;
         if (first < last) {
         // create the partition: S1, Pivot, S2
            pivotIndex = partition(theArray, first, last);
         // sort regions S1 and S2
            quickSort(theArray, first, pivotIndex-1);
            quickSort(theArray, pivotIndex+1, last);
         } // end if
      } // end quickSort

38 
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Partition Overview 

1.  Choose and position pivot  
2.  Take a pass over the current part of the 

array 
1.  If item < pivot, move to S1 by incrementing S1 

last position and swapping item into beginning of 
S2  

2.  If item >= pivot, leave where it is 
3.  Place pivot in between S1 and S2 

39 
CS200 Advanced Sorting 

Partition Code: the Pivot 
 private static int partition(Comparable[] theArray, int first, int last) {

Comparable tempItem;
      // place pivot in theArray[first]
      // by default, it is what is in first position
         choosePivot(theArray, first, last);
         Comparable pivot = theArray[first]; // reference pivot
      // initially, everything but pivot is in unknown
         int lastS1 = first; // index of last item in S1
     

40 
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Partition Code: Segmenting 
// move one item at a time until unknown region is empty
         for (int firstUnknown = first + 1; firstUnknown <= last; ++firstUnknown)   

{// move item from unknown to proper region
            if (theArray[firstUnknown].compareTo(pivot) < 0) {
            // item from unknown belongs in S1
               ++lastS1;   // figure out where it goes
               tempItem = theArray[firstUnknown];  // swap it with first unknown
               theArray[firstUnknown] = theArray[lastS1];
               theArray[lastS1] = tempItem;
                     } // end if
              // else item from unknown belongs in S2 – which is where it is!
         } // end for
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Partition Code: Replace Pivot 
    // place pivot in proper position and mark its location
         tempItem = theArray[first];
         theArray[first] = theArray[lastS1];
         theArray[lastS1] = tempItem;
         return lastS1;
      } // end partition

42 
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Unknown 

Pivot 

first 
lastS1 
firstUnknown 
last 

27 38 12 39 27 16 

27 38 12 39 27 16 
S2 (>=p) 

S1  (<p) 
27 38 12 39 27 16 

27 38 12 39 27 16 

27 38 12 39 27 16 

27 38 12 39 27 16 
Is firstUnknown > 

last ? 

27 38 12 39 27 16 

1.quicksort(0, 5) 
---Partition (0, 5) 

CS200 Advanced Sorting 
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Unknown 

Pivot 

first 
lastS1 
firstUnknown 
last 

S2 (>=p) 

S1  (<p) 

27 38 39 27 12 16 

1-1. Call quicksort(0,1) 

12 16 

1-2. Call quicksort(3,5) 

38 39 27 

38 39 27 

38 39 27 

39 
38 27 

12 16 

Completed 

1-2-1. Recursive call: quicksort(3,4) CS200 Advanced Sorting 
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Quicksort Visualizations 

n  http://en.wikipedia.org/wiki/Quicksort 
n  http://www.sorting-algorithms.com 
n  Hungarian Dancers via YouTube 
 

Average Case 
n  Each level involves, 

q  Maximum (n – 1) comparisons. 

q  Maximum (n – 1) swaps. (3(n – 1)  data movements) 

q  log2 n levels are required. 

n  Average complexity O(n log2 n)	
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 < p  
p  >= p 

                                        

 < p1  p1  >= p1  < p2  p2  >= p2 
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Clicker Q 

n  Is QuickSort like MergeSort in that it is 
always O(nlogn) complexity? 

A.  Yes 
B.  No   

47 
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Worst Case!  

48 

60 70 10 20 30 40 50 before the partition 

60 70 10 20 30 40 50 After the partition 

60 70 20 30 40 50 quicksort() 

60 70 30 40 50 quicksort() 

quicksort( a, 
low, pivot-1 ); 

will not do 
anything! 

60 70 40 50 quicksort() 

quicksort( a, 
low, pivot-1 ); 

will not do 
anything! 

n levels! 
CS200 Advanced Sorting 
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 Worst case analysis 

n  This case involves 
(n-1)+(n-2)+(n-3)+…+1+0 = n(n-1)/2���
comparisons  

n  Quicksort is O(n2) for the worst-case. 
 

49 
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Selecting pivot 

n  Strategies for Selecting pivot 
q  First value : worst case if the array is sorted. 

n  Middle value or Median value 
q  Better for the sorted data 
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quickSort – Algorithm Complexity 
n  Depth of call tree? 

n  O(log n)    split roughly in half, best case 
n  O(n)          worst case 

n  Work done at each depth 
n  O(n)           

n  Total Work 
n  O(n log n)    best case 
n  O(n2)           worst case 
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Clicker Q 

n  Why would someone pick QuickSort over 
MergeSort? 

A.  Less space  
B.  Better worst case complexity 
C.  Better average complexity 
D.  Easier to code 

52 
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How fast can we sort? 

n  Observation: all the sorting algorithms so far 
are comparison sorts 
q  A comparison sort must do at least O(n) 

comparisons (why?) 
q  We have an algorithm that works in O(n log n) 
q  What about the gap between O(n) and O(n log n) 

n  Theorem: all comparison sorts are Ω(n log n) 

n  MergeSort is therefore an “optimal” algorithm 
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Radix Sort (by MSD) 

80    24   62   40   68   20   26 

24, 20, 26 40 62, 68 80 

20 24 26 40 62 68 80 

1. Take the most significant digit (MSD) of each number. 
2. Sort the numbers based on that digit, grouping 
elements with the same digit into one bucket. 
3. Recursively sort each bucket, starting with the next digit 
to the right. 
 4. Concatenate the buckets together in order. 
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Radix Sort 

n  To avoid using extra space:  Radix sort by Least 
Significant Digit 

RadixSort(A, d) 
  // d - number of digits 
  for i=1 to d 
   sort(A) on the ith least  
    significant digit  

Assumption: sort(A) is a stable sort 
Show Example. 
What to do if not all numbers have the same # of digits? 
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Radix sort 

n  Analysis  
§  n moves each time it forms groups  

§  n  moves to combine them again into one group. 

§  Total 2n*d (for the strings of d  characters)  

§  Radix sort is O(n) for d << n 

56 
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Radix Sort 

n  Radix sort is 
q  Fast 
q  Asymptotically fast (i.e., O(n)) 
q  Simple to code 
q  A good choice 

n  Can we use it for strings? 
n  So why not use it for every application? 

CS200 Advanced Sorting 


