
1

1

Divide and Conquer Algorithms:
Advanced Sorting

Prichard Ch. 10.2: Advanced Sorting
Algorithms

(revisit) Properties of Growth-rate
functions(1/3)
1.  You can ignore low-order terms in an

algorithm's growth-rate function.

n  O(n3+4n2+3n) it is also O(n3)	

2
CS200 Advanced Sorting

(revisit) Properties of Growth-rate
functions(2/3)
2. You can ignore a multiplicative constant in

the high-order term of an algorithm’s growth-
rate function

n  O(5n3), it is also O(n3)	

3
CS200 Advanced Sorting

(revisit) Properties of Growth-rate
functions (3/3)
3. You can combine growth-rate functions

n  O(n2) + O(n), it is also O(n2+n)	

n  Which you write as O(n2) 	

4
CS200 Advanced Sorting

2

Examples

Find a growth function that has the best
estimation of O(x2).	

A. f(x) = 17x + 11	

B. f(x) = x2 + 1000	

C. f(x) = xlogx	

D. f(x) = x4/2	

E. f(x) = 2x	

5
CS200 Advanced Sorting

Demonstrating Efficiency

n  Computational complexity of the algorithm
q  Time complexity

q  Space complexity
n  Analysis of the computer memory required
n  Data structures used to implement the algorithm

6
CS200 Advanced Sorting

Best, Average, and Worst Cases

n  Worst case
q  Just how bad can it get:

n  The maximal number of steps

n  Average case
q  Amount of time expected “usually”

n  Best case
q  The smallest number of steps

7

CS200 Advanced Sorting

Sequential Search

n  Array of n items
q  From the first one until either you find the item or

reach the end of the array.
q  Best case: O(1)
q  Worst case: O(n) (n times of comparison)
q  Average case: O(n) (n/2 comparison)

8

10 9 3 8 5 6 7 4 1 45 90 22 2 0

CS200 Advanced Sorting

3

Binary Search (1/4)

n  Searches a sorted array for a particular item by repeatedly
dividing the array in half.

n  Determines which half the item must be in and discards other
half.

n  Suppose that n = 2k for some k. (n=1,2,4,8,16,…)
1.  Inspect the middle item of size n
2.  Inspect the middle item of size n/2
3.  Inspect the middle item of size n/22

4.  .
5.  .
6.  .

9

10 11 13 15 16 20 22 39 40 45 90 92 93 94

CS200 Advanced Sorting

Binary Search (2/4)

10

n items

n/2 items
n/22 items

n/23 items

If we have n = 2k, in worst case, it will repeat this k times

The last item

CS200 Advanced Sorting

Clicker Q

n  What is the worst case for binary search?
A.  Item is at the end of the array
B.  Item is at the beginning of the array
C.  Item is not in the array
D.  The array is not sorted

11
CS200 Advanced Sorting

Binary Search (3/4)

n  Dividing array in half k times.

n  Worst case
§  Algorithm performs k divisions and

 k comparisons.

§  Since n = 2k , k = log2n

§  O(log2n)

12
CS200 Advanced Sorting

4

Binary Search (4/4)

n  What if n is not a power of 2?

n  We can find the smallest k such that,

2k-1 < n < 2k

k - 1 < log2n < k
k< 1 + log2n < k+1
k = 1 + log2n rounded down

Therefore, the algorithm is still O(log2n).

13
CS200 Advanced Sorting

Is Binary Search is more Efficient than
Linear Search? (1/2)
n  For large number, O(log2n) requires

significantly less time than O(n)

n  For small numbers such as n < 25, does not
show big difference.

14
CS200 Advanced Sorting

Is Binary Search is more Efficient than
Linear Search? (2/2)

15

Sorting Algorithm

n  Organize a collection of data into either
ascending or descending order.

n  Internal sort
q  Collection of data fits entirely in the computer’s

main memory

n  External sort
q  Collection of data will not fit in the computer’s

main memory all at once.

n  We will only discuss internal sort.

16
CS200 Advanced Sorting

5

17

Aside: Sorting Redux from 161

n  Simple Sorts: Bubble, Insertion, Selection
n  Doubly nested loop
n  Outer loop puts one element in its place
n  It takes i steps to put element i in place

q  n-1 + n-2 + n-3 + … + 3 + 2 + 1
q  O(n2) complexity
q  In place

CS200 Advanced Sorting

Mergesort

n  Recursive sorting algorithm

n  Gives the same performance

n  Divide-and-conquer
q  Step 1. Divide the array into halves
q  Step 2. Sort each half
q  Step 3. Merge the sorted halves into one sorted

array

18
CS200 Advanced Sorting

19

36 16 27 39 12 27

36 16 27 39 12 27

36 16 27 39 12 27

16 36 12 39

16 27 36 12 27 39

12 16 27 27 36 39

36 16 12 39
Merge Steps

Recursive calls
to mergesort

If there is only
ONE item, it is

sorted!

CS200 Advanced Sorting
20

MergeSort code
public static void mergesort(Comparable[] theArray, int first, int

last){
// Sorts the items in an array into ascending order.

 // Precondition: theArray[first..last] is an array.
 // Postcondition: theArray[first..last] is sorted.
if (first < last) {
 int mid = (first + last) / 2; // midpoint of the array
 mergesort(theArray, first, mid);
 mergesort(theArray, mid + 1, last);
 merge(theArray, first, mid, last);
}// if first >= last, there is nothing to do

}

why does it work? CS200 Advanced Sorting

6

21

36 16 27 39 12 27

36 16 27 39 12 27

36 16 27 39 12 27

16 36 12 39

16 27 36 12 27 39

12 16 27 27 36 39

36 16 12 39
Merge Steps

Recursive calls
to mergesort

Mergesort (0,2) Mergesort (3,5)

Mergesort (0,1) Mergesort(2,2)
Mergesort (3,4) Mergesort (5,5)

Mergesort (0,5)

Mergesort (0,0) Mergesort(1,1)
Mergesort(3,3) Mergesort (4,4)

Merge(0,1)

Merge(0,2)

Merge(3,4)

Merge(3,5)

Merge(0,5)
CS200 Advanced Sorting

Clicker Q

n  How many times was MergeSort called?
A.  1
B.  6
C.  10
D.  20

22
CS200 Advanced Sorting

Merge code I
private static void merge (Comparable[] theArray, Comparable[]

tempArray, int first, int mid, int last({!

 int first1 = first;!
 int last1 = mid;!
 int first2 = mid+1;!
 int last2 = last;!
 int index = first1; // incrementally creates sorted array!
!
 while ((first1 <= last1) && (first2 <= last2)){!
 if(theArray[first1].compareTo(theArray[first2])<0) {!
 tempArray[index] = theArray[first1];!
 first1++;!
 }!
 else{!
 tempArray[index] = theArray[first2];!
 first2++;!
 }!
 index++;!
 } !

23
CS200 Advanced Sorting

Merge code II
!// finish off the two subarrays, if necessary !
!while (first1 <= last1){!

 tempArray[index] = theArray[first];!
 first1++;!
 index++; }!
 while(first2 <= last2)!
 tempArray[index] = theArray[first2];!
 first2++;!
 index++; }!
 for (index = first; index <= last: ++index){!
 theArray[index] = tempArray[index];!
 }!
} //end merge!

24
CS200 Advanced Sorting

7

Mergesort Complexity

n  Analysis
q  Merging:

n  for total of n items in the two array segments, at most
n -1 comparisons are required.

n  n moves from original array to the temporary array.

n  n moves from temporary array to the original array.

n  Each merge step requires 3n – 1 major operations

25
CS200 Advanced Sorting

Mergesort: More complexity

n  Each call to mergesort recursively calls
itself twice.

n  Each call to mergesort divides the array
into two.

q  First time: divide the array into 2 pieces
q  Second time: divide the array into 4 pieces
q  Third time: divide the array into 8 pieces

26
CS200 Advanced Sorting

Mergesort Levels
n  If n is a power of 2 (i.e. n = 2k), then the

recursion goes k = log2n levels deep.

n  If n is not a power of 2, there are 1 + log2n
(rounded down) levels of recursive calls to
mergesort.

27
CS200 Advanced Sorting

Mergesort Operations
n  At level 0, the original call to mergesort calls

merge once. (requires 3n – 1 operations)

n  At level 1, two calls to mergesort and each of
them will call merge.
q  Total 2 * (3 * (n/2) – 1) operations required

n  At level m, 2m calls to merge occur.
q  Each of them will call merge with n/2m items and each

of them requires 3(n/2m)-1 operations. Together,
3n-2m operations are required.

n  Because there are log2n or 1+log2n levels, total
O(n*log2n)

28
CS200 Advanced Sorting

8

Mergesort Computational Cost

n  Since there are either log2n or 1+log2n levels,
mergesort is O(n*log2n) in both the worst
and average cases.

n  Significantly faster than O(n2)	

29
CS200 Advanced Sorting

Clicker Q

n  Is MergeSort O(nlogn) in the best case?
A.  Yes
B.  No

30
CS200 Advanced Sorting

31

Stable Sorting Algorithms

n  Suppose we are sorting a database of users
according to their name. Users can have identical
names.!

n  A stable sorting algorithm maintains the relative
order of records with equal keys (i.e., sort key
values). Stability: whenever there are two records R
and S with the same key and R appears before S in
the original list, R will appear before S in the sorted
list."

n  Is mergeSort stable?"

CS200 Advanced Sorting

Quicksort

1.  Select a pivot item.
2.  Subdivide array into 3 parts

•  Pivot in its “sorted” position
•  Subarray with elements < pivot
•  Subarray with elements >= pivot

3.  Recursively apply to each sub-array

32
CS200 Advanced Sorting

9

Invariant for partition

33

P

first

< P >= P ?

last firstUnknown lastS1

S1 S2 Unknown Pivot

Initial state of the array

34

P

first

?

last firstUnknown

lastS1

Unknown Pivot

CS200 Advanced Sorting

Lecture 12: 10/2/14
n  Grammars (Prichard Ch. 6.2, Rosen Ch. 13.1)
n  Stacks (Prichard Ch. 7)
n  Recursion (Prichard Ch. 6.1 & 6.3)
n  Queues (Prichard Ch. 8)
n  Complexity (Rosen Ch. 3.2, 3.3, Prichard 10.1)
n  Advanced Sorting (Prichard 10.2)

n  PA2 LATE PERIOD.
n  WA2 due 10/7 @ 9:30
n  Midterm 1 on 10/9

35

Today’s Trivial Participation Quiz:
Which password was *not* on 2014 25 Most Common Passwords list?
a.   letmein
b.   trustno1
c.   monkey
d.   guessit

Quicksort Key Idea: Pivot

36

 < p
p >= p

 < p1 p1 >= p1 < p2 p2 >= p2

CS200 Advanced Sorting

10

Clikcer Q

n  An invariant for the QuickSort code is:
A.  After the first pass, the P< partition is fully

sorted.
B.  After the first pass, the P>= partition is fully

sorted.
C.  After each pass, the pivot is in the correct

position.
D.  It has no invariant.

37
CS200 Advanced Sorting

QuickSort Code

 public static void quickSort(Comparable[] theArray, int first,
 int last) {

int pivotIndex;
 if (first < last) {
 // create the partition: S1, Pivot, S2
 pivotIndex = partition(theArray, first, last);
 // sort regions S1 and S2
 quickSort(theArray, first, pivotIndex-1);
 quickSort(theArray, pivotIndex+1, last);
 } // end if
 } // end quickSort

38
CS200 Advanced Sorting

Partition Overview

1.  Choose and position pivot
2.  Take a pass over the current part of the

array
1.  If item < pivot, move to S1 by incrementing S1

last position and swapping item into beginning of
S2

2.  If item >= pivot, leave where it is
3.  Place pivot in between S1 and S2

39
CS200 Advanced Sorting

Partition Code: the Pivot
 private static int partition(Comparable[] theArray, int first, int last) {

Comparable tempItem;
 // place pivot in theArray[first]
 // by default, it is what is in first position
 choosePivot(theArray, first, last);
 Comparable pivot = theArray[first]; // reference pivot
 // initially, everything but pivot is in unknown
 int lastS1 = first; // index of last item in S1

40
CS200 Advanced Sorting

11

Partition Code: Segmenting
// move one item at a time until unknown region is empty
 for (int firstUnknown = first + 1; firstUnknown <= last; ++firstUnknown)

{// move item from unknown to proper region
 if (theArray[firstUnknown].compareTo(pivot) < 0) {
 // item from unknown belongs in S1
 ++lastS1; // figure out where it goes
 tempItem = theArray[firstUnknown]; // swap it with first unknown
 theArray[firstUnknown] = theArray[lastS1];
 theArray[lastS1] = tempItem;
 } // end if
 // else item from unknown belongs in S2 – which is where it is!
 } // end for

41
CS200 Advanced Sorting

Partition Code: Replace Pivot
 // place pivot in proper position and mark its location
 tempItem = theArray[first];
 theArray[first] = theArray[lastS1];
 theArray[lastS1] = tempItem;
 return lastS1;
 } // end partition

42
CS200 Advanced Sorting

43

Unknown

Pivot

first
lastS1
firstUnknown
last

27 38 12 39 27 16

27 38 12 39 27 16
S2 (>=p)

S1 (<p)
27 38 12 39 27 16

27 38 12 39 27 16

27 38 12 39 27 16

27 38 12 39 27 16
Is firstUnknown >

last ?

27 38 12 39 27 16

1.quicksort(0, 5)
---Partition (0, 5)

CS200 Advanced Sorting
44

Unknown

Pivot

first
lastS1
firstUnknown
last

S2 (>=p)

S1 (<p)

27 38 39 27 12 16

1-1. Call quicksort(0,1)

12 16

1-2. Call quicksort(3,5)

38 39 27

38 39 27

38 39 27

39
38 27

12 16

Completed

1-2-1. Recursive call: quicksort(3,4) CS200 Advanced Sorting

12

CS200 Advanced Sorting 45

Quicksort Visualizations

n  http://en.wikipedia.org/wiki/Quicksort
n  http://www.sorting-algorithms.com
n  Hungarian Dancers via YouTube

Average Case
n  Each level involves,

q  Maximum (n – 1) comparisons.

q  Maximum (n – 1) swaps. (3(n – 1) data movements)

q  log2 n levels are required.

n  Average complexity O(n log2 n)	

46

 < p
p >= p

 < p1 p1 >= p1 < p2 p2 >= p2

CS200 Advanced Sorting

Clicker Q

n  Is QuickSort like MergeSort in that it is
always O(nlogn) complexity?

A.  Yes
B.  No

47
CS200 Advanced Sorting

Worst Case!

48

60 70 10 20 30 40 50 before the partition

60 70 10 20 30 40 50 After the partition

60 70 20 30 40 50 quicksort()

60 70 30 40 50 quicksort()

quicksort(a,
low, pivot-1);

will not do
anything!

60 70 40 50 quicksort()

quicksort(a,
low, pivot-1);

will not do
anything!

n levels!
CS200 Advanced Sorting

13

 Worst case analysis

n  This case involves
(n-1)+(n-2)+(n-3)+…+1+0 = n(n-1)/2���
comparisons

n  Quicksort is O(n2) for the worst-case.

49
CS200 Advanced Sorting

Selecting pivot

n  Strategies for Selecting pivot
q  First value : worst case if the array is sorted.

n  Middle value or Median value
q  Better for the sorted data

50
CS200 Advanced Sorting

51

quickSort – Algorithm Complexity
n  Depth of call tree?

n  O(log n) split roughly in half, best case
n  O(n) worst case

n  Work done at each depth
n  O(n)

n  Total Work
n  O(n log n) best case
n  O(n2) worst case

CS200 Advanced Sorting

Clicker Q

n  Why would someone pick QuickSort over
MergeSort?

A.  Less space
B.  Better worst case complexity
C.  Better average complexity
D.  Easier to code

52
CS200 Advanced Sorting

14

53

How fast can we sort?

n  Observation: all the sorting algorithms so far
are comparison sorts
q  A comparison sort must do at least O(n)

comparisons (why?)
q  We have an algorithm that works in O(n log n)
q  What about the gap between O(n) and O(n log n)

n  Theorem: all comparison sorts are Ω(n log n)

n  MergeSort is therefore an “optimal” algorithm

CS200 Advanced Sorting
54

Radix Sort (by MSD)

80 24 62 40 68 20 26

24, 20, 26 40 62, 68 80

20 24 26 40 62 68 80

1. Take the most significant digit (MSD) of each number.
2. Sort the numbers based on that digit, grouping
elements with the same digit into one bucket.
3. Recursively sort each bucket, starting with the next digit
to the right.
 4. Concatenate the buckets together in order.

55

Radix Sort

n  To avoid using extra space: Radix sort by Least
Significant Digit

RadixSort(A, d)
 // d - number of digits
 for i=1 to d
 sort(A) on the ith least
 significant digit

Assumption: sort(A) is a stable sort
Show Example.
What to do if not all numbers have the same # of digits?

CS200 Advanced Sorting

Radix sort

n  Analysis
§  n moves each time it forms groups

§  n moves to combine them again into one group.

§  Total 2n*d (for the strings of d characters)

§  Radix sort is O(n) for d << n

56
CS200 Advanced Sorting

15

57

Radix Sort

n  Radix sort is
q  Fast
q  Asymptotically fast (i.e., O(n))
q  Simple to code
q  A good choice

n  Can we use it for strings?
n  So why not use it for every application?

CS200 Advanced Sorting

