
1

 CS200: Graphs

Prichard Ch. 14
Rosen Ch. 11

CS200 - Hash Tables 2

Graphs

 What can this
represent?

n  A computer
network

n  Abstraction of
a map

n  Social network

A collection of
nodes and edges

Directed Graphs

 Sometimes we
want to represent
directionality:

n  Unidirectional
network
connections

n  One way streets
n  The web

A collection of
nodes and
directed edges

Graphs/Networks Around Us

CS200 - Hash Tables 5

http://noduslabs.com/wp-content/uploads/2011/12/
figure-5-meaning-circulation.png

http://lin-ear-th-inking.blogspot.com/2010/12/
visualizing-geodetic-information-with.html

2

Graph Terminology

Vertices/
Nodes

Edges

Two vertices are adjacent
if they are connected by
an edge.
An edge is incident on two
vertices

Degree of a vertex:
number of edges incident
on it

G=(V, E)

v

u

e

Vertices Edges

Graph terminology: 14.1 in Prichard, 10.1 in Rosen

subgraph

Graph Terminology

A subgraph of a graph G = (V,E)
is a graph (V’,E’) such that V’
is a subset of V and, E’ is a
subset of E

Paths

n  Path: a sequence of
edges

n  (e1, e2, e3) is a path of
length 3 from v1 to v4

n  In a simple graph a path
can be represented as a
sequence of vertices

v1

v4

v2

v3

e1

e2

e3

Graph Terminology

Self loop (loop): an edge that
connects a vertex to itself

Simple graph: no self loops
and no two edges connect the
same vertices

Multigraph: may have multiple
edges connecting the same
vertices

Pseudograph: multigraph with
self-loops

3

Complete Graphs

n  Simple graph that contains exactly one edge
between each pair of distinct vertices.

10

Complete Graph

Cycles

The cycle Cn, n ≥ 3, consists of n vertices v1, v2,
…, vn and edges {v1, v2}, {v2, v3},…., and {vn-1,
vn}. 	

11

Wheels

n  We obtain the wheel Wn when we add an
additional vertex to the cycle Cn, for n ≤ 3, and
connect this new vertex to each of the n
vertices in Cn, by new edges

12

n-Cubes (n-dimensional hypercube)

Hypercube

001

100

000

010 011

110 111
101

4

The degree of a vertex

n  The degree of a vertex in an undirected
graph
q  the number of edges incident with it
q  except that a loop at a vertex contributes twice to

the degree of that vertex.

14

Example

15

a f e g

d c b

deg(a) = 2
deg(b) = deg(f) = 4

deg(d) = 1
deg(e) = 3
deg(g) = 0

Some Graph Theorems

n  Handshaking: Let G=(V,E) be an undirected
graph with e edges. Then

n  An undirected graph has an even number of
vertices of odd degree.

n  Let G=(V,E) be a graph with directed edges.
Then €

2e = deg(v)
v∈V
∑

€

deg−(v) =
v∈V
∑ deg+(v) =

v∈V
∑ E

Bipartite Graphs

n  A simple graph on which the vertex set V can be
partitioned into two disjoint sets V1 and V2 such that every
edge connects a vertex in V1 to one in V2.

n  Bipartite?

n  Theorem: A simple graph is bipartite iff it is possible to
assign one of two different colors to each vertex of the
graph so that no two adjacent vertices are assigned the
same color.

a b

c

d
e

f

g
a b

c

d e

f

5

Directed Graphs

Indegree: number
of incoming edges

Outdegree: number
of outgoing edges w

 v

Connected Components

n  An undirected graph is called connected if there is a path
between every pair of vertices of the graph.

n  A connected component of a graph G is a connected
subgraph of G that is not a proper subgraph of another
connected subgraph of G.

a

b

c

d

e

f

g

G={{a,b,c,d,e,f,g},E}

G1={{a,b,c},E1} G2={{d,e,f,g}, E2}

Graph ADT

n  Create
n  Empty?
n  Number of vertices?
n  Number of edges?
n  Edge exists between two vertices?
n  Add a vertex
n  Add an edge between two vertices
n  Delete a vertex (and any connected edges)
n  Delete the edge between two vertices
n  Retrieve a vertex

Classes for Undirected
Graph with Instance Variables
n  Edge:

q  vertex1, vertex2
q  weight

n  Graph:
q  Number of edges, number of vertices
q  organized collection of vertices and edges

6

Graph Data Structures -
Adjacency Matrix

n  Vertices
q  labels mapped into indices
q  one vertex mapped to one index
q  Values:

n  boolean to indicate presence/absence of edge in
(un)directed graph

n  int to indicate value of weighted edge

n  Edges
q  square matrix of edges

n  size = number of vertices
n  edge: two (vertex) indices

n  useful for dense graphs

Adjacency Matrix Example

A

B C

E

D

mapping of vertex
labels to array indices

Label Index
A 0
B 1
C 2
D 3
E 4

0 1 2 3 4
0 0 1 0 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0

Adjacency Matrix:
array of edges
indexed by vertex

Graph Data Structures -
Adjacency List

n  Vertices
q  mapped to list of adjacencies
q  adjacency: edge

n  Edges: lists of adjacencies
q  linked-list of out-going edges

per vertex
n  useful for sparse graphs

A

B C

E

D

Adjacency List Example

mapping of vertex
labels to list of edges

Index Label

0 A

1 B

2 C

3 D

4 E

B D
E
A
B
C

A

B C

E

D

7

Which Implementation Is Best?

n  Which implementation best supports common
Graph Operations:
q  Is there an edge between vertex i and vertex j?
q  Find all vertices adjacent to vertex j

n  Which best uses space?

Implementation: Edge Class

Class Edge {

private Integer v,w; // vertices

private int weight;

public Edge(Integer first, Integer second, int edgeWeight){

v = first; w = second; weight = edgeWeight; }

public int getWeight() {

return weight; }

public Integer getV() {

return v; }

public Integer getW() {

return w; }

Implementation: Graph Class

class Graph {

private int numVertices;

private int numEdges;

private Vector<TreeMap<Integer, Integer>> adjList;

public Graph(int n) {

numVertices = n; numEdges = 0;

adjList = new Vector<TreeMap<Integer, Integer>>();

for (int i=0; i<numVertices; i++) {

adjList.add(new TreeMap<Integer, Integer>());

}

}

Implementation:
Graph Class Methods
public int getNumVertices()

public int getNumEdges()

public int getEdgeWeight(Integer v, Integer w)

public void addEdge(Integer v, Integer w)

public void addEdge(Edge e)

public void removeEdge(Edge e)

public Edge findEdge(Integer v, Integer w)

8

Six Degrees of Kevin Bacon

n  Actor x has a
Kevin Bacon
Number of n if
the shortest
path between x
and Kevin
Bacon has
length n

clint
eastwood

john
malkovich

michelle
pfeiffer

laura
linney

kevin
bacon

meg
ryan

morgan
freeman

tom
hanks jack

nicholson

apollo 13

Graph made with the help of the oracle of Bacon: http://oracleofbacon.org/

Shortest Path Algorithms
(Dijkstra’s Algorithm)

n  Graph G(V,E) with non-negative weights
(“distances”)

n  Compute shortest distances from vertex s to
every other vertex in the graph

Shortest Path Algorithms
(Dijkstra’s Algorithm)

n  Algorithm
q  Maintain array d (minimum distance estimates)

n  Init: d[s]=0, d[v]=∞ v∈V-s
q  Priority queue of vertices not yet visited
q  select minimum distance vertex, visit v, update

neighbors
n  Interactive Dijkstra’s algorithm:

q  http://students.ceid.upatras.gr/~papagel/project/
kef5_7_1.htm

Shortest Path Algorithms
(Dijkstra’s Algorithm)

a

b e

c d

10

3 2

1

9

7

2

5

4 6

9

Shortest Path Algorithms
(Dijkstra’s Algorithm): Initialize

0

10

3 2

1

9

7

2

5

4 6

8
8

8
8

a

b

c

e

d

a b c d e
0 ∞ ∞ ∞ ∞

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 1

0

1
0

5

10

3 2

1

9

7

2

5

4 6

8
8

a

b

c

e

d

a b c d e
0 10/a 5/a -- --
a b c d e
0 10/a 5/a -- --

a b c d e
0 ∞ ∞ ∞ ∞

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 2

0

8 14

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d

a b c d e
0 10/a 5/a -- --
0 8/c 5/a 7/c 14/c 0 8/c 5/a 7/c 14/c

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 3

0

8 11

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d

a b c d e
0 10/a 5/a -- --
0 8/c 5/a 7/c 14/c
0 8/c 5/a 7/c 11/d 0 8/c 5/a 7/c 11/d

10

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 4

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d

a b c d e
0 10/a 5/a -- --
0 8/c 5/a 7/c 14/c
0 8/c 5/a 7/c 11/d
0 8/c 5/a 7/c 9/d

Shortest Path Algorithms
(Dijkstra’s Algorithm): Done

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d

a b c d e
0 8/c 5/a 7/c 9/b

Minimum distance from a to b : 8
Minimum distance from a to c: 5
Minimum distance from a to d: 7
Minimum distance from a to e: 9

Example

40

Dijkstra’s Algorithm
Dijkstra(G: graph with vertices v0…vn-1 and weights

w[u][v])!
!// computes shortest distance of vertex 0 to every
other vertex!
!create a set vertexSet that contains only vertex 0!
!d[0] = 0!
!for (v = 1 through n-1)!
! !d[v] = infinity!
!for (step = 2 through n)!
! !find the smallest d[v] such that v is not in
vertexSet!
! !add v to vertexSet!
! !for (all vertices u not in vertexSet) !
! ! !if (d[u] > d[v] + w[v][u]) !
! ! ! !d[u] = d[v] + w[v][u]!

11

Shortest Path Algorithms
Using a Priority Queue (Dijkstra’s Algorithm): step 1

0

10

5

10

3 2

1

9

7

2

5

4 6

8
8

a

b

c

e

d
[5,c],[10,b]

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 2

0

8 14

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d
[7,d],[8,b],[14,e]

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 3

0

8 11

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d
[8,b],[11,e]

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 4

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

d

c

e
[9,c]

12

Shortest Path Algorithms
(Dijkstra’s Algorithm): Done

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

d

c

e

Dijkstra’s Algorithm

n  How to obtain the shortest paths?
q  At each vertex maintain a pointer that tells you the

vertex from which you arrived.

