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 CS200: Graphs 

Prichard Ch. 14 
Rosen Ch. 11 

CS200 - Hash Tables 2 

Graphs 

   What can this 
represent? 

n  A computer 
network 

n  Abstraction of 
a map 

n  Social network 

A collection of  
nodes and edges 

Directed Graphs 

   Sometimes we 
want to represent 
directionality: 

n  Unidirectional 
network 
connections 

n  One way streets 
n  The web 

A collection of  
nodes and 
directed edges 

Graphs/Networks Around Us 

CS200 - Hash Tables 5 

http://noduslabs.com/wp-content/uploads/2011/12/
figure-5-meaning-circulation.png 

http://lin-ear-th-inking.blogspot.com/2010/12/
visualizing-geodetic-information-with.html 
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Graph  Terminology 

Vertices/ 
Nodes 
 

Edges 

Two vertices are adjacent 
if they are connected by 
an edge. 
An edge is incident on two 
vertices 
 
Degree of a vertex: 
number of edges incident 
on it 
 

G=(V, E) 

v 

u 

e 

Vertices Edges 
 

Graph terminology:  14.1 in Prichard, 10.1 in Rosen 

subgraph 

Graph  Terminology 

A subgraph of a graph G = (V,E) 
is a graph (V’,E’) such that V’ 
is a subset of V and, E’ is a  
subset of E 

Paths 

n  Path: a sequence of 
edges 

n  (e1, e2, e3) is a path of 
length 3 from v1 to v4 

n  In a simple graph a path 
can be represented as a 
sequence of vertices 

v1 

v4 

v2 

v3 

e1 

e2 

e3 

Graph  Terminology 

Self loop (loop):  an edge that 
connects a vertex to itself 
 
Simple graph: no self loops 
and no two edges connect the 
same vertices 
 
Multigraph: may have multiple 
edges connecting the same 
vertices 
 
Pseudograph:  multigraph with 
self-loops 
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Complete Graphs 

n  Simple graph that contains exactly one edge 
between each pair of distinct vertices.  

10 

Complete Graph 

Cycles 

The cycle Cn, n ≥ 3, consists of n vertices v1, v2, 
…, vn and edges {v1, v2}, {v2, v3},…., and  {vn-1, 
vn}.  	
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Wheels 

n  We obtain the wheel Wn when we add an 
additional vertex to the cycle Cn, for n ≤ 3, and 
connect this new vertex to each of the n 
vertices in Cn, by new edges 

12 

n-Cubes (n-dimensional hypercube) 

Hypercube 

001 

100 

000 

010 011 

110 111 
101 
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The degree of a vertex 

n  The degree of a vertex in an undirected 
graph  
q  the number of edges incident with it 
q  except that a loop at a vertex contributes twice to 

the degree of that vertex. 

14 

Example 

15 

a f e g 

d c b 

deg(a) = 2 
deg(b) = deg(f) = 4 

deg(d) = 1  
deg(e) = 3 
deg(g) = 0 

Some Graph Theorems 

n  Handshaking: Let G=(V,E) be an undirected 
graph with e edges. Then 

n  An undirected graph has an even number of 
vertices of odd degree.  

n  Let G=(V,E) be a graph with directed edges. 
Then € 

2e = deg(v)
v∈V
∑

€ 

deg−(v) =
v∈V
∑ deg+(v) =

v∈V
∑ E

Bipartite Graphs 

n  A simple graph on which the vertex set V can be 
partitioned into two disjoint sets V1 and V2 such that every 
edge connects a vertex in V1 to one in V2. 

n  Bipartite? 

n  Theorem: A simple graph is bipartite iff it is possible to 
assign one of two different colors to each vertex of the 
graph so that no two adjacent vertices are assigned the 
same color.  

a b 

c 

d 
e 

f 

g 
a b 

c 

d e 

f 
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Directed Graphs 

Indegree:  number 
of incoming edges 

Outdegree:  number 
of outgoing edges w 

 v 

Connected Components 

n  An undirected graph is called connected if there is a path 
between every pair of vertices of the graph.  

n  A connected component of a graph G is a connected 
subgraph of G that is not a proper subgraph of another 
connected subgraph of G.  

a 

b 

c 

d 

e 

f 

g 

G={{a,b,c,d,e,f,g},E} 

G1={{a,b,c},E1} G2={{d,e,f,g}, E2} 

Graph ADT 

n  Create 
n  Empty? 
n  Number of vertices? 
n  Number of edges? 
n  Edge exists between two vertices? 
n  Add a vertex 
n  Add an edge between two vertices 
n  Delete a vertex (and any connected edges) 
n  Delete the edge between two vertices 
n  Retrieve a vertex 

Classes for Undirected  
Graph with Instance Variables 
n  Edge:  

q  vertex1, vertex2 
q  weight 

n  Graph: 
q  Number of edges, number of vertices 
q  organized collection of vertices and edges 
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Graph Data Structures -  
Adjacency Matrix 

n  Vertices 
q  labels mapped into indices 
q  one vertex mapped to one index 
q  Values: 

n  boolean to indicate presence/absence of edge in 
(un)directed graph 

n  int to indicate value of weighted edge 

n  Edges 
q  square matrix of edges 

n  size = number of vertices 
n  edge: two (vertex) indices 

n  useful for dense graphs 

Adjacency Matrix Example 

A 

B C 

E 

D 

mapping of vertex 
labels to array indices 

Label Index 
A 0 
B 1 
C 2 
D 3 
E 4 

0 1 2 3 4 
0 0 1 0 1 0 
1 0 0 0 0 1 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 0 0 1 0 0 

Adjacency Matrix: 
array of edges 
indexed by vertex 

Graph Data Structures -  
Adjacency List 

n  Vertices 
q  mapped to list of  adjacencies 
q  adjacency: edge  

n  Edges: lists of adjacencies 
q  linked-list of out-going edges 

per vertex 
n  useful for sparse graphs 

A 

B C 

E 

D 

Adjacency List Example 

mapping of vertex 
labels to list of edges 

Index Label 

0 A 

1 B 

2 C 

3 D 

4 E 

B     D     
E     
A     
B     
C     

A 

B C 

E 

D 
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Which Implementation Is Best? 

n  Which implementation best supports common 
Graph Operations: 
q  Is there an edge between vertex i and vertex j? 
q  Find all vertices adjacent to vertex j 

n  Which best uses space? 

Implementation: Edge Class 

Class Edge {

private Integer v,w;  // vertices

private int weight; 

public Edge(Integer first, Integer second, int edgeWeight){


v = first; w = second; weight = edgeWeight; }


public int getWeight() {


return weight; } 


public Integer getV() {


return v; }


public Integer getW() {


return w; }





Implementation: Graph Class 

class Graph {

private int numVertices; 

private int numEdges;

private Vector<TreeMap<Integer, Integer>> adjList;

 

public Graph(int n) {


numVertices = n; numEdges = 0;

adjList = new Vector<TreeMap<Integer, Integer>>();

for (int i=0; i<numVertices; i++) {


adjList.add(new TreeMap<Integer, Integer>()); 

}


}


Implementation:  
Graph Class Methods 
public int getNumVertices()

public int getNumEdges() 

public int getEdgeWeight(Integer v, Integer w)

public void addEdge(Integer v, Integer w)

public void addEdge(Edge e)

public void removeEdge(Edge e)

public Edge findEdge(Integer v, Integer w)
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Six Degrees of Kevin Bacon 

n  Actor x has a 
Kevin Bacon 
Number of n if 
the shortest 
path between x 
and Kevin 
Bacon has 
length n 

clint 
eastwood 

john 
malkovich 

michelle 
pfeiffer 

laura 
linney 

kevin  
bacon 

meg 
ryan 

morgan 
freeman 

tom 
hanks jack 

nicholson 

apollo 13 

Graph made with the help of the oracle of Bacon: http://oracleofbacon.org/ 

Shortest Path Algorithms  
(Dijkstra’s Algorithm) 

n  Graph G(V,E) with non-negative weights 
(“distances”) 
 

n  Compute shortest distances from vertex s to 
every other vertex in the graph 

Shortest Path Algorithms  
(Dijkstra’s Algorithm) 

n  Algorithm 
q  Maintain array d (minimum distance estimates) 

n  Init: d[s]=0, d[v]=∞ v∈V-s 
q  Priority queue of vertices not yet visited 
q  select minimum distance vertex, visit v, update 

neighbors 
n  Interactive Dijkstra’s algorithm:  

q  http://students.ceid.upatras.gr/~papagel/project/
kef5_7_1.htm 

Shortest Path Algorithms  
(Dijkstra’s Algorithm) 

a 

b e 

c d 

10 

3 2 

1 

9 

7 

2 

5 

4 6 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): Initialize 

0 

10 

3 2 

1 

9 

7 

2 

5 

4 6 

8 
8 

8 
8 

a 

b 

c 

e 

d 

a      b       c        d        e 
0      ∞     ∞    ∞      ∞ 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 1 

0 

1
0 

5 

10 

3 2 

1 

9 

7 

2 

5 

4 6 

8 
8 

a 

b 

c 

e 

d 

a      b       c        d        e 
0  10/a   5/a    --        -- 
a      b       c        d        e 
0  10/a   5/a    --        -- 

a      b       c        d        e 
0      ∞     ∞    ∞      ∞ 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 2 

0 

8 14 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 

a      b       c        d        e 
0  10/a   5/a    --        -- 
0    8/c    5/a   7/c  14/c 0    8/c    5/a   7/c  14/c 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 3 

0 

8 11 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 

a      b       c        d        e 
0  10/a   5/a    --        -- 
0    8/c    5/a   7/c  14/c 
0    8/c    5/a   7/c  11/d 0    8/c    5/a   7/c  11/d 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 4 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 

a      b       c        d        e 
0  10/a   5/a    --        -- 
0    8/c    5/a   7/c  14/c 
0    8/c    5/a   7/c  11/d 
0    8/c    5/a   7/c  9/d 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): Done 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 

a      b        c      d        e 
0    8/c    5/a   7/c    9/b 

Minimum distance from a to b : 8 
Minimum distance from a to c: 5 
Minimum distance from a to d:  7 
Minimum distance from a to e: 9 

Example 

40 

Dijkstra’s Algorithm 
Dijkstra(G: graph with vertices v0…vn-1 and weights 

w[u][v])!
!// computes shortest distance of vertex 0 to every 
other vertex!
!create a set vertexSet that contains only vertex 0!
!d[0] = 0!
!for (v = 1 through n-1)!
! !d[v] =  infinity!
!for (step = 2 through n)!
! !find the smallest d[v] such that v is not in 
vertexSet!
! !add v to vertexSet!
! !for (all vertices u not in vertexSet) !
! ! !if (d[u] > d[v] + w[v][u]) !
! ! ! !d[u] = d[v] + w[v][u]!



11 

Shortest Path Algorithms  
Using a Priority Queue (Dijkstra’s Algorithm): step 1 

0 

10 

5 

10 

3 2 

1 

9 

7 

2 

5 

4 6 

8 
8 

a 

b 

c 

e 

d 
[5,c],[10,b] 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 2 

0 

8 14 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
[7,d],[8,b],[14,e] 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 3 

0 

8 11 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
[8,b],[11,e] 

Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 4 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

d 

c 

e 
[9,c] 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): Done 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

d 

c 

e 

Dijkstra’s Algorithm 

n  How to obtain the shortest paths? 
q  At each vertex maintain a pointer that tells you the 

vertex from which you arrived. 


